

Disruption Event Characterization and Forecasting (DECAF) in Tokamaks

S.A. Sabbagh¹, J.W. Berkery¹, Y.S. Park¹, J.H. Ahn¹, Y. Jiang¹, J.D.
Riquezes¹, R.E. Bell², M.D. Boyer², A.H. Glasser³, J. Hollocombe⁴, J. Kim⁵, A.
Kirk⁴, J. Ko⁵, W. Ko⁵, L. Kogan⁴, B. LeBlanc², J.H. Lee⁵, Y.K. Oh⁵, F. Poli², S.D.
Scott², A. Thornton⁴, L. Terzolo⁵, S.W. Yoon⁵, S.J. Wang⁵, Z.R. Wang²

¹Department of Applied Physics, Columbia University, New York, NY ²Princeton Plasma Physics Laboratory, Princeton, NJ ³Fusion Theory and Computation, Inc., Kingston, WA ⁴Culham Centre for Fusion Energy, UKAEA, Abingdon, UK ⁵National Fusion Research Institute, Daejeon, Republic of Korea

V1.4s

27th IAEA Fusion Energy Conference

25 October 2018

Gandhinagar, India

MAST-U **KSTAR**

Supported by US DOE grants DE-SC0016614, DE-SC0018623, DE-FG02-99ER54524

A broadened disruption prediction and avoidance analysis is progressing for ITER and future tokamaks

□ <u>Motivation</u>: Disruption prediction/avoidance is a critical need

- A highest priority DOE FES (Tier 1) initiative present "grand challenge" in tokamak stability research:
 - <u>Can be done</u>! (JET: < 4% disruptions w/C wall, < 10% w/ITER-like wall)
 - ITER disruption allowance: < 1 2% (energy + E&M loads); << 1% (runaways)

Talk Outline

- Disruption Event Characterization and Forecasting (DECAF) introduction
- Present DECAF progress and initial multi-device examination (now including MAST)
 - Density limits, disruption forecasting w/ rotating MHD, global MHD forecasting
 - Disruption event chain analysis for arbitrary discharges
- Key supporting analysis
 - KSTAR ideal/resistive stability analysis, high normalized beta, high noninductive plasmas with 100% NICF "predict-first" projections

Disruption event characterization is a critical and logical step in a disruption avoidance plan

DECAF code and initial successful research/results is now advancing to a new level

DECAF brief highlights of prior results

- First automated event chain analysis (followed deVries' manual work)
- Excellent performance on smaller, targeted databases (NSTX)
 - <u>Ex.</u>: DIS, WPC, IPR, LOQ, RWM events found 100%, VDE event 91%
 - Computed events accurately represented experiment (~ 10 events)
 - Physics model forecasted global MHD disruptions with ~ 85% reliability
- Disruption chains often repeated, e.g.: RWM VDE WPC IPR DI DI

J.W. Berkery, S.A. Sabbagh, R. Bell, et al., Phys. Plasmas 24 (2017) 056103

Recent progress

- Density limit model based on radiating island power balance being tested
- New MHD events in DECAF allow forecasting on transport timescales
- Linear resistive MHD analysis as first step to theory-based forecasting
- Multi-machine database processing with small number of verified events
- Analysis of disruption chains from general databases

Recently a density limit model has been examined in DECAF based on power balance in an island

Local island power balance limit

- Power balance in island between Ohmic heating and radiated power loss
- If radiated power at the island exceeds the input power (P_{loss} > P_{input}), island grows

27th IAEA Fusion Energy Conf. EX/P6-26: Disruption Event Characterization and Forecasting in Tokamaks (S.A. Sabbagh, et al. 10/25/18)

More powerful automated MHD event objects have been developed for DECAF

New DECAF MHD events utilize history of 15 criteria to define time evolving disruption warning level

Classical tearing stability examined in KSTAR plasmas varied β_N , q_{95} (for future DECAF models)

- □ Classical tearing stability index, Δ' , computed at the q = 2 surface using outer layer solutions
- At higher q_{95} , Δ' is mostly positive predicting unstable classical tearing mode
 - Indicates that neoclassical effects or wall effects need to be invoked to produce stability *A.H. Glasser, et al., Phys. Plasmas 23 (2016) 112506

See paper EX/P7-16 this conference (Friday) Y.S. Park, S.A. Sabbagh, J.H. Ahn, et al., for further detail

Predictive TRANSP analysis shows KSTAR design target $\beta_N \sim 5$ can be approached with $f_{NI} \sim 100\%$

Predict-first" analysis used to design high-β, 100% non-inductive current fraction (NICF) experiments for present KSTAR run campaign

DECAF reduced kinetic MHD model computations forecast the instability boundary to unstable global MHD modes

- Favorable characteristics
 - Stability contours CHANGE for each time point
 - Possible to compute growth rate prediction in real time

J.W. Berkery, S.A. Sabbagh, R. Bell, et al., Phys. Plasmas 24 (2017) 056103

- 44% predicted unstable < 320 ms (approx. 60τ_w) before current quench
- 33% predicted unstable within
 100ms of a minor disruption

Progress on DECAF now moving to processing of multi-machine databases

Analysis

Kin equ / sta ana KS⁻ pla MA

datab starte

> Red sto DE analysis

V 21 2							
etic uilibrium ability alysis on TAR; nned for ST	Device / Capability	KSTAR	MAST	NSTX	DIII-D	TCV	
	Full database access (type)	Yes (MDSplus)	Yes (UDA)	Yes (MDSplus)	Yes (MDSplus)	Yes (MDSplus)	
	Database analysis	started	started	started		started	
AF base ed quires rage of CAF	Equilibrium analysis	Kinetic + MSE	scheduled	Kinetic + MSE	available		
	Stability	ldeal, Resistive Kinetic MHD	scheduled	Ideal, kinetic MHD (resistive)	ldeal, kinetic MHD		
	shot*seconds (for kinetic analysis)	1,886 (2016+2017)	2,667 (est) (M5 - M9 runs)	2,000 / year (est)			

□ Aim to add AUG next, then JET and C-Mod databases

Initial analysis of large databases further supports published result that disruptivity doesn't increase with β_N

While disruptivity plots provide important information, they can be misleading when used incorrectly

- Example: What are the most important regions to study on this plot?
 - A human might focus on the high event probability regions
 - Machine learning alone might segregate disruptive from nondisruptive regions of the plot and learn from that division
 - Problem → plasma conditions can change significantly between first problem detected and when disruption happens

□ <u>Answer</u>: the <u>circles</u> O mark the key region to study!

Example: DECAF shows plasma parameters of VDE event can occur far from those of DIS event

□ Largest portion of detected VDE events appear at (*I*_{*i*}, *κ*) with very small portion of DIS events detected

DECAF provides an early disruption forecast - on transport timescales – potential for disruption avoidance

- Rotating MHD slows, bifurcates, and locks
- Then, plasma has an H-L back-transition (pressure peaking warning PRP) before DIS
- Early warning gives the potential for disruption avoidance by plasma profile control

Global MHD modes can also be "slow" and allow early warnings for disruptions, potentially allowing avoidance

H – L back transition (PRP) drags out time to disruption (> 100 ms – transport timescale)

Rapidly-expanding DECAF code provides a new paradigm for disruption prediction research

- Multi-faceted, integrated approach to disruption prediction and avoidance with several key characteristics
 - Physics-based approach yields <u>understanding</u> of evolution toward disruptionss needed for confident extrapolation of forecasting
 - Physics-based DECAF events can guide how to avoid disruption
 - Full multi-machine databases used (full databases needed!)
 - Open to all methods of data analysis (physics, machine learning, etc.)

DECAF analysis producing early warning disruption forecasts

Sufficiently early for potential disruption avoidance by profile control

Next steps

- Expand number of DECAF events evaluated in large database analysis

Sign-up Sheet for Reprints (include email address)

Initial analysis of large databases further supports published result that disruptivity doesn't increase with plasma β

Experiments directly measuring global MHD stability verify that highest β_N/I_i is *not* the least stable scenario (NSTX)

Resonant Field Amplification (RFA) measurement of stability

27th IAEA Fusion Energy Conf. EX/P6-26: Disruption Event Characterization and Forecasting in Tokamaks (S.A. Sabbagh, et al. 10/25/18) 21

DECAF is fueled by coordinated research that continues to validate/develop physics models

Global MHD

- Detection: available magnetic diagnostics, plasma rotation, equilibrium
- Forecasting: Kinetic MHD model has high success in NSTX, DIII-D

Resistive MHD

- Detection / forecasting: available magnetic diagnostics, plasma rotation
- **\Box** <u>Forecasting</u>: starting examination of MRE **\rightarrow** start with Δ ' evaluation

Density limits

- Detection: rad. power, global empirical limit
- Forecasting: starting examination of rad. island power balance model

Physics analysis / experiments to build DECAF models

Interpretive and "predict-first" analysis of KSTAR long-pulse, high beta plasmas with high non-inductive fraction

KSTAR kinetic equilibria w/ MSE are examined in the context of past published database

High β_N plasma
 16325
 Higher B_T (q₉₅)

Examples in talk

Higher edge bootstrap current

18476 & 16498

 Internal Transport Barrier (ITB)

Many thousands of kinetic equilibria run during testing

27th IAEA Fusion Energy Conf. EX/P6-26: Disruption Event Characterization and Forecasting in Tokamaks (S.A. Sabbagh, et al. 10/25/18) 23

Clear pressure profile distinction between Internal Transport Barrier and H-mode phases

Broad pedestal pressure reconstructed in H-mode is not observed in earlier ITB phase
Xp by Jinil Chung

A broad non-inductive current fraction profile leads to low shear at low q in high β_N plasma

Kinetic EFIT reconstructed again shows evolution to low-sheared q-profiles but now at high q

27th IAEA Fusion Energy Conf. EX/P6-26: Disruption Event Characterization and Forecasting in Tokamaks (S.A. Sabbagh, et al. 10/25/18)

Higher q₉₅ plasma has greater ideal n = 1 no-wall stability in DCON, closer to marginal stability

- Unlike higher β_N plasma, equilibria is mostly stable to n = 1 ideal modes in DCON
 - Note generally smooth evolution of stability criterion – reached with improved kinetic equilibria
- The *q*-profile at higher B_T evolves higher *q*_{min} above 1
 - Sawteeth disappear
- Reconstructed lower q shear at higher values of q does not lead to n = 1 instability in DCON

Kinetic reconstructions focused first on KSTAR plasmas with high-non-inductive fraction; NICF exceeds 75%

TRANSP analysis of experimental plasmas

Non-inductive fraction

Beam-driven

Bootstrap

Non-inductive fraction is key for stable high beta steady state operation

New 2nd NBI system is installed in KSTAR and will be available for 2018 run campaign

- Geometry of 2nd NBI system is included in TRANSP model
 - 2018 : upward-slanted source
 - 2019+ : all 3 sources available

 $\rightarrow P_{NBI} \simeq 1.5 \text{MW/source}$

Predictive transport capability (TRANSP) allows "predict-first" projections for upcoming runs

Project from existing KSTAR plasmas

- Set fraction of Greenwald density and confinement factor ITER H_{98y2}
 - Neoclassical ion transport, electron transport set to match H_{98v2}
- KSTAR 1st and 2nd NBI systems are modeled (incl. aiming angles); power levels set realistically based on MSE needs, etc.

TRANSP 16325	2016 actual	2018 NBI	2019 NBI
NIC fract. (%)	71%	96%	130%
β_N	2.7	3.4	4.4
l _i	0.9	0.91	0.95
T _i (0) (keV)	4.5	5.5	7.2
T _e (0) (keV)	4.6	3.3	3.3
n _e (0) (10 ²⁰ m ⁻³)	5.2	5.6	5.5
f _{Greenwald}	0.5	0.5	0.5
H _{98y2}	1.25	1.25	1.25

Transport analysis projections allow for variations of plasma parameters to meet targets

"Predict-first" analysis being used to design 2018 high-β experiments

THREE CU group experiments scheduled for 2018 (3 days)

Predictive TRANSP is being used to develop scenarios for 2018 high-β experimental runs in KSTAR – aiming to obtain :

Iong-pulse, MHD stable high beta plasmas

Predictive TRANSP analysis shows KSTAR design target $\beta_N \sim 5$ can be approached with $f_{NI} \sim 100\%$

NBI increased

- existing shot: 4.5 MW
- <u>2018 NBI</u> taken as 6.5 MW

■ By altering I_P and B_T values, $\beta_N > 4$, up to KSTAR design target 5 can be achieved with 100% noninductive current fraction

Classical tearing stability examined using resistive DCON code for high β_N and higher q₉₅ plasmas

□ Classical tearing stability index, Δ' , computed at the q = 2 surface using outer layer solutions

• At higher q_{95} , Δ' is mostly positive predicting unstable classical tearing mode

 Indicates that neoclassical effects or wall effects need to be invoked to produce stability

A.H. Glasser, et al., Phys. Plasmas 23 (2016) 112506