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Edge Localized Modes (ELMs) remain one of the risk for the success of ITER

* The explosive release of energy from ELMs: filamentary structure
magnetically confined plasmas produces JYYXy@F
dramatic events called - ELMs

 ELMs have a detrimental effect on the
plasma facing components.

 ELMs pose one of the most serious

obstacles for steady-state operation in a

future fusion device. e | irk PRL 2004

Dilli-D What triggers the ELMs?
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Peeling-ballooning model is the leading physics model for the ELM onset

Unstable region

Coupled Peeling-Ballooning moes

Peeling modes

Stable region

Edge current density

Ballooning modes

Pressure gradient (ballooning a)

Zohm PPCF 1996
. . . . Connor, PPCF 1998
* There is a body of literature supporting this paradigm. Snyder 2002
Leonard PoP 2014
« Alternative nonlinear MHD model points to ELMs being the results of a basic
detonation. e, e oo
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Is the PB model sufficient to explain the ELM onset?

Coupled Peeling-Ballooning moes

Unstable region

Peeling modes

NL(?)
Stable region,

o

o
o®

Edge current density

Ballooning modes

LR ™

Pressure gradient (ballooni'ng a)
 Can nonlinear (NL) mechanisms:

(1) modify the stability boundary which could explain why the pedestal is pinned to a
marginally stable region (for multiple transport time scales) ¢
(2) provide a local modification of the current density profile in the narrow pedestal regione
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SELECTED PREVIOUS RESULTS ON INTER-ELM FLUCTUATIONS WHERE THE

PEDESTAL IS PINNED IN METASTABLE REGIME PRIOR TO THE ELM ONSET
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Pedestal parameters remain clamped during many transport time scale

prior to the ELM onset

» AUG, DIII-D showed that the pedestals Vne and V Te are clamped before ELM onset.

» On C-Mod, the TePed is clamped suggesting that its gradient is also clamped.
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Examples of Stability Analysis - ELMs occur in “PB stable” regimes

- In JET ILW, ELMs sometimes appear to * In AUG, there is no evidence of the
be triggered while the operation evol.u.hon o.f operation point or the
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Pedestal parameters are pinned in a metastable regime at the PB stability

boundary

7/, (w* /2) - Diamagnetic Stabililzation

3000 prus

* Long before the ELM onset, the pedestal is
pinned to marginal PB stability boundary.

-4 ms— -1 ms prior to ELM onse
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What prevents the ELM from
being triggered?

AN

Experimental
operating
point

8

0.50

Normalized edge current (jimae + Jsep) /(2 < J >)

Does the PB stability fully capture
the ELM triggering mechanism? 2 i 6

Normalized pressure gradient o
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ANALYSIS (BES AND MAGNETICS) OF THE DOMINANT INTER-ELM

FLUCTUATIONS DURING THE LONG INTER-ELM PERIODS
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Time history of typical LSN discharges and pedestal gradient evolutions
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Typical inter-ELM magnetic fluctuations: identification of the dominant

modes during stationary inter-ELM phase

#170881 (a) raw magnetic signal (b) one filtered inter-ELM period
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The noise has been filtered out and the dominant modes are tracked during

each long inter-ELM periods.

3540 3550 3560 3570 3580
t [ms]

Short non-stationary inter-ELM phases as well as core modes are ignored from
this analysis.
oii-b
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Three dominant mode frequencies and amplitudes are tfracked
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These dominant modes are also identified on the BES

170881, 3033 ms .
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These modes have both density and magnetic components.
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Determination of the modes poloidal wavelengths for each modes using BES

170881, 3033 ms1

z (m)

2-pt correlation analysis provides an estimate of the poloidal

wavelength at each mode frequency.
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Correlation between the magnetic probes and BES provides the radial
localization of each mode

This result suggests correlation between j;| and density fluctuations.
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We observe an intensification of the correlation between magnetic and BES

near the separatrix prior to the ELM onset

NATIONAL FUSION FACILI

<B€’ 6”3) Z[m]

<l§9,5ne>

<l§9,5ne)

5 ()thlnobesd) =0.9
01 o o oo oot

uuuu

225 230

0.4 r

0.2

08f & | i
: (@ 2nd haf |
06 = | 1
: {st half | :
04" | |
: |

223 224 225 226 227 228

(c) 2nd half of intler-EL[\*I |

223 224 225 226 227 228

=i . N . . .
223 224 225 226 227 228
R [cm]

 The red mode is excited (near q =6) as the
blue mode (near q = 5) has its intensity
reduced.

— During the phase where the gradients are pinned
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OBSERVATION OF NONLINEAR DYNAMIC (THROUGH BICOHERENCE)

BETWEEN THE INTER-ELM MODES
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Nonlinear coupling between modes and the energy transfer can be

estimated using the bicoherence

* The three-wave interaction can be R O g e o e Energy fransfer ferm
described using the Ritz model P
Py
Ritz, Phys. Fluids B 1989 or = 2f Py + > f1,f2 Ty (f1, f2)

Kim, PoP 1996

) S5 S8 8F 4N
b*(f1, f2) = EEARNET R

- Definition of bicoherence: b2 (f1, f2) = b2 (f2, [1) = b*(f1.—f2)  Symmetry

V(= f1 = fa, f2) = 2(f1,—f1 — f2) = V(= fa, fo + f1) = D*(—f1, fo + f1)

Bicoherence is a useful tool to
diagnose nonlinear interactions.

i

Assumption of the frozen flow hypothesis -
frequency and wave number can be directly related.
fQ f1+7/2
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Nonlinear analysis using bicoherence during the last phase of the inter-ELM

period indicates coupling between pedestal modes
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Why Peeling-ballooning model might not be sufficient to explain the ELM

onset?

Bicoherence analysis suggests that nonlinear effects (between the dominant modes)
play a role during the second inter-ELM phase when the pedestal is pinned.

Coupled Peeling-Ballooning modes (1) modify the stability boundary
Unstable region which could explain why the
pedestal is pinned to a
(2) marginally stable region (for
....... . multiple transport time scales) ¢

(2) provide a local modification
of the current density profile in
the narrow pedestal region?

Stable
region <" [ Ballooning modes

Edge current density

Pressure gradient (bqllo-oning a)

Can the local intrinsic current driven by the third mode
DIlI-D be key player in the modification of local safety factor?
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WORK IN PROGRESS: INTER-ELMS BURST EVENTS IN THE DIII-D PEDESTAL

SIMILAR TO OBSERVATIONS ON JET AND AUG
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Identification of inter-ELMs burst events in the DIII-D pedestal similar to

observations on JET and AUG

Diallo ES 2018
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Spectrum @ 4616 ms Spectrum @ 4660 ms

Are the bursts small ELMs? Z =
2 c
) D)
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So when does PB provide a soft limit enabling a NL mechanism to displace

to a lower energy saturated states?

- Stable linearly

— Unstable nonlinearly

Energy

— Saturated state available

* Inthe PB paradigm, the pedestal
can be linearly stable but have
nonlinear states available

Configuration

Ham PRL 2016
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