
0 500 1000
E [keV]

0

0.1

0.2

0.3

0.4

m
ax

 
 P

B0 /E = 0.13
B0/E = 0.39
B0/E = 0.74
B0/E = 1.0

-1.5 -1 -0.5 0 0.5 1
P

0

0.5

1

1.5

B 0/E

 P  @ E = 47.5keV

Investigation of fast particle redistribution
induced by sawtooth instability in NSTX-U

D. Kim1), M. Podestà1), D. Liu2), G. Hao2) and F.M. Poli1)  
1) Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA 

2) Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA 

Doohyun Kim (dkim@pppl.gov) 

Introduction

References [1] D. Liu et al., Nucl. Fusion 58, 082028 (2018), [2] R. Hawryluk, An empirical approach to tokamak 
transport Physics Close to Thermonuclear Conditions vol 1 ed B. Coppi et al. (Brussels: Commission of the European 
Communities) p 19. (1980), (http://w3.pppl.gov/~pshare/help/transp.htm), [3] M. Podestà et al., Plasma Phys. Control. 
Fusion, 56, 055003 (2014), [4] A. Pankin et al., Comput. Phys. Commun., 159, 157 (2004), [5] R.B. White et al., Phys. 
Fluids, 27, 2455 (1984), [6] W.W. Heidbrink et al., Ncommun. Comput. Phys., 10, 716 (2011), [7] J. Menard et al., 
Nucl. Fusion, 52, 083015 (2012), [8] M. Podestà et al., Rev. Sci. Instrum. 79 10E521 (2008) [9] D. Liu et al., Rev. Sci. 
Instrum. 85 11E105 (2014) [10] D. Kim et al., Nucl. Fusion 58, 082029 (2018), [11] Ya.I. Kolesnichenko, V.V. Lutsenko 
and Yu.V. Yakovenko, Phys. Plasmas, 4, 2544 (1997)

Experimental Scenario

Summary and Future work

Motivation 
q  NSTX-U L-mode sawtoothing discharges analysis [1] using TRANSP code [2] 

§  Conventional sawtooth models cannot fully reproduce the behaviour of fast ion during sawtooth crashes 
- Some global features (e.g. neutron rate) can be reproduced  
- Fast ion properties (e.g. distribution function) may not be adequately be recovered 

§  Free parameters in TRANSP (e.g. redistribution and/or reconnection fraction) need to be determined in priori 

q  A more reliable model to describe sawtooth-induced fast ion transports is required 
§  Phase space dependences  (fast ion energy, pitch, canonical momentum, etc.) needs to be considered  
§  Kick model [3] is applied to provide modelling results as an input for NUBEAM [4] in TRANSP 

ORBIT Modelling Results
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Application to TRANSP Simulations

q Conventional sawtooth models in TRANSP have a limited capability to reproduce experimental results  
q Application of kick model to TRANSP simulation improves the modelling of fast ion redistribution 

§  TRANSP simulation can take into account the phase space variables using kick probability matrix in NUBEAM 
§  Neutron rate is in a good agreement with the measurement 
§  Fast ion distribution function from synthetic FIDASIM results qualitatively match the FIDA measurement 

q The simulation results confirm the theoretical criteria for fast ion redistribution 
§  Fast ions with energy higher than the critical energy are less affected by sawteeth for the redistribution 
§  More quantitative criteria to describe the level of redistribution of fast ions beyond the 0-D prediction are required 

q The improvement from the application of kick model needs to be validated on other tokamaks 

EX/P6-33

27th IAEA Fusion Energy Conference, Gandhinagar, India, 22-27 October, 2018 

National Spherical Torus Experiment Upgrade (NSTX-U) [7] 

Major radius: 0.95 m        Aspect ratio: 1.5 
Plasma current: < 2 MA   Triangularity: 0.8 
Toroidal field: < 1.0 T       Elongation: 2.7 
pulse length: ~ 1 - 5 s        
6 Neutral Beam sources:  
PNBI ≤ 12 MW, Einjection ≤ 95 keV 

Diagnostics for Fast Ion Measurements  

NSTX-U #204163 – L-mode sawtoothing discharge 

Comparison of Simulation Results with Experiments / Theory
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q  Fast Ion Deuterium Alpha (FIDA) [8] 
§  Measures the Doppler-shifted Dα emission of re-neutralized fast deuterons 
§  Fast ion distribution function from active/passive tangential and vertical FIDA 

q  Solid State Neutral Particle Analyser (SSNPA) [9]  
§  Measures neutral particle fluxes from CX reactions between fast ions and neutrals 
§  Consists of r-SSNPA (radial component), t-SSNPA (tangential component) and p-

SSNPA (passive signal) 

Simulation tools 
q ORBIT [5]: Hamiltonian guiding-centre code 

§  Analyse energetic particle transport induced by instabilities in tokamaks 
§  Sawtooth instability is applied as (1,1) mode magnetic field perturbation  

using a linear displacement  

q Kick model [3]: Reduced fast ion transport model 
§  Compute transport probability matrices to represent the fast ion transport induced by instabilities 
§  Test the dependencies of fast ion redistribution during sawtooth crashes on the fast ion phase space variables 

q TRANSP / NUBEAM [4]: Tokamak transport code / Monte Carlo module 
§  Enable time dependent integrated interpretative/predictive simulations of tokamak discharges  
§  Use the probability matrix from ORBIT-kick model as an input for NUBEAM calculation in TRANSP simulation 

q FIDASIM [6] 
§  Calculate a synthetic FIDA diagnostic signal 
§  Predict and integrate the active Dα emission for FIDA profile to compare with measurements 

 

q Mode amplitude estimation using ORBIT code and application of kick model to ORBIT modelling 

§  Flat-top plasma current: Ip = 0.7MA 
§  NBI power: Pinj = 1.1MW (Einj = 72keV) 
§  Sawtooth crashes are identified by 

- Neutron rate drops at each crash 
- n=1 signal from Mirnov coil 

§  Te/ne profiles are conditionally averaged 
- Sampling time of diagnostics 
(Thompson, CHERS) is comparable to 
sawtooth periods 

§  Reconstructed profiles are averaged 
before and after ~10ms a sawtooth 
crash at t = 1.353s 

§  Relative change of neutron rate drop: ORBIT [10] vs measurements 
 
 
 
 

§  Kick model is applied for the probability matrix calculation 
- ΔE and ΔPζ calculation with the ORBIT-estimated mode amplitudes 

§  Comparison of neutron rate from simulations and experiments 
- TRANSP using kick model results over-estimates neutron rate 
- Input data for the estimation of mode amplitude has uncertainties 
- The amplitude in ORBIT modelling remains as a free parameter 

§  The probability matrix depends on the particles’ position in 
phase (orbit type) and real space (relative location to ρinv) 

§  Passing particles in all energy range are affected by a crash 
§  Trapped particles under a certain energy are redistributed 
§  Negative averaged ΔPζ (blue): particles move outside ρinv 
§  Positive averaged ΔPζ (red): particles move inside 
§  Balanced averaged ΔPζ (green): particles are initially located 

near ρinv and move similarly both inside and outside 
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q  Interpretative TRANSP simulations for sawtoothing discharges 
§  Sawtooth crash time is given by measurements (no prediction using crash criteria) 
§  Input thermal profile data include the sawtooth effect  
§  Reconnection of flux surface, q-profile, fast ion redistribution are described based 

on models (full/partial reconnection, kick model) at each crash time 
§  Free parameters for full/partial reconnection: fraction of fast ion redistribution, 

partial reconnection fraction, etc.  
§  Input data for kick model: mode amplitudes and probability matrices 
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q Comparison of neutron rate using kick model and conventional sawtooth models  

§  Simulation condition for kick model 
- One probability matrix with normalised mode amplitudes  
- Mode amplitudes are estimated using neutron rate drops 

§  Free parameter setting for Full/Partial reconnection 
- Fast ion redistribution fraction: 20% / 50%  
- Partial reconnection fraction: 50% 

§  Reference data 
- Normalised measured neutron rate (blue) 

§  Without considering sawtooth effects on fast ion redistribution 
(red), the neutron drop can be reproduced  

§  The neutron rates from full/partial reconnection, kick model 
cases match the measurement with the given parameters 

§  Comparison of neutron rate is not sufficient to determine a 
model to describe the sawtooth effect on fast ion transport  

q Comparison of fast ion density profiles 
§  Kick model (blue): clear effect from sawteeth  

- Drop at the centre and increase outside ρinv 
§  Full/partial (red/gree) reconnection: negligible change  

- Lower fast ion redistribution fraction (20%, 50%) 
§  Fast ion driven current profiles 

- About 50% of central drop for the kick model case 
- Larger drop near ρinv for full/partial reconnection case  
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q Comparison of fast ion distribution functions with FIDA measurements 

q Comparison of critical energy with theory [11] 

§  Kick model: redistribution of fast ions in phase space can be seen from low energy particles 
- Passing particles (high pitch): max. ~60% decrease 
- Trapped particles (low pitch): max.~100% increase 

§  Partial reconnection case: no significant variation after a crash 
- Decrease of passing particles (~20%) but no clear change in trapped particles 

§  Kick model can show changes of fast ion features that the conventional models cannot describe  
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§  Synthetic FIDA signal from FIDASIM using 
TRANSP simulation results with different models 
- Comparison of measured FIDA spatial profiles 

§  Average simulated FIDA profiles over 1, 3, 5ms 
before and after a crash  
- compensate the FIDA temporal resolution (10ms) 

§  Measurement from t-FIDA (mostly sensitive to 
passing particles) is considered 

§  FIDA measurement: fast ions in the centre are expelled to outside the inversion radius (R~122cm) after a crash 
§  Kick model: qualitatively reproduces the measured FIDA signal  

- After a crash t-FIDA signal drops up to 50% inside the inversion radius (R~125cm)  
- The shoulder of increased signal is seen outside the inversion radius 

§  Full/partial reconnection: no clear sign of the sawtooth-induced fast ion redistribution 
- t-FIDA signal decreases all across the radius after a crash 
- Can be similar to kick model case with larger fast ion redistribution fraction (with largely over-estimated neutron rate) 

§  Redistribution criterion for trapped particles 

§  No-redistribution condition for passing particles 

§  The maximum ΔPζ values vs energy show that 
- The critical energy for passing particles redistribution is not clearly seen (blue and red, estimated Ecrit ~ 1.1MeV) 
- Trapped particles with energies over ~30keV are weakly affected by the crash (green, violet, estimated Ecrit ~ 28keV) 

§  The kick model estimation is consistent with the theory [11] and ORBIT modelling [10] 
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q Fast ion distribution functions in phase space (outside the q=1 surface, ρN ~ 0.55) 


