

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Error Field Impact on Mode Locking and Divertor Heat Flux in NSTX-U

Nate Ferraro¹ J-K Park,¹ CE Myers,² ML Reinke,³ SP Gerhardt,¹ JE Menard,¹ A Brooks,¹ S Munaretto⁴ ¹ Princeton Plasma Physics Lab, Princeton NJ United States ² Sandia National Lab, Albuquerque NM United States ³ Oak Ridge National Lab, Oak Ridge TN United States ⁴ General Atomics, San Diego CA United States

IAEA FEC

Ahmedabad, India Oct. 2018

Work supported by US DOE under contract DE-AC02-09CH11466

Error Fields Impacted NSTX-U Performance in 2016

- Most NSTX-U L-modes were locked from q=2 outward
- Significant tearing mode activity could be a consequence of rotation braking from EFs
- Locked modes were not preventable or correctable with NSTX-U RMP coils
- Experiments reveal multi-mode, time-dependent sensitivity, making EFC very challenging
- Goal of this work is to identify sources of error fields and sensitivity of plasma, to help eliminate most deleterious error fields before NSTX-U resumes operation

Experiments Show Clear Evidence of Multi-Mode Sensitivity

- In single-mode model, one RMP coil row should be able to prevent or correct locked mode without causing additional locking
- However, q=2 mode could not be unlocked using RMP coils due to q=1 locking at large RMP amplitude
 - Shows multi-mode sensitivity
- Also, q=2 mode could not be prevented by RMP coils

 Shows that error field is large
- Mode was unlocked by tangential beams, and healed by Hmode transition

Optimal Error Field Correction Phase Found to Change in Time

- The EFC phase that optimizes rotation and density early in shot does poorly later (and vice-versa)
- Change appears to occur after formation of q=1 surface (0.4 s)
- Experiments rule out change in OH current as source
- Would require time-dependent (or equilibrium-dependent) EFC algorithm

"Black" phase does poorly early, but well in flattop "Purple" phase does well early, but poorly in flatto

Extensive Metrology Conducted After 2016 Campaign to Identify EF Sources

Vessel measured using ROMER Arm

- Show no changes relative to 2004 measurements

- PF5 measured relative to vessel
 - Show significant changes relative to 2004 measurements, due to removal of mechanical constraints to allow thermal expansion of coils
- TF center rod / CS casing measured using FARO laser tracker

Error Field Models Constructed From Metrology Data

- n=1 error field calculated from measured shift / tilt of TF, PF5, and OH coils
- Several model scenarios and NSTX-U equilibrium reconstructions considered
 - Error fields proportional to coil currents, and therefore scenario-dependent.

Shift

Anale

242°

246°

 $\varphi_{n=1}$

121°

55°

 $\delta R_{n=2}$

3.42 mm

4.09 mm

CS Casing

Center

Coil

PF5U

PF5L

Rod

 $\delta R_{n=1}$

4.09

mm

6.19

mm

Shift

1.8 mm

4.9 mm

 $\delta R_{n=3}$

4.01

mm

9.45

mm

Tilt Angle

156°

206°

 $\varphi_{n=3}$

323°

292°

 $\varphi_{n=2}$

113°

11°

Tilt

0.15 mrad

1.15 mrad

Effect of Error Fields on Plasma Calculated with M3D-C1 and IPEC/GPEC

- Given error field sources, perturbed equilibria calculated using M3D-C1 and IPEC/GPEC
- M3D-C1 is an extended-MHD code that includes resistivity, viscosity, and anisotropic thermal conductivity
- IPEC / GPEC is an ideal-MHD code that optionally includes self-consistent kinetic effects (e.g. NTV)
- Linear, single-fluid models are used here for convenience

Total Resonant Fields

- Confinement and locking are strongly correlated with the total resonant field in the perturbed equilibrium
- TF misalignment is found to be dominant source of total resonant field, due to large current in TF
- TF error field is dominantly m/n = 1/1, consistent with finding of sensitivity to q=1 surface
- IPEC finds time-dependent plasma response and optimal EFC phase in agreement with experiment
 - Calculation fails when q=1 surface is present, complicating analysis

Neoclassical Toroidal Viscosity

- Non-axisymmetric perturbations lead to braking of toroidal rotation
 - Can destabilize tearing modes & resistive wall modes
- Even when single-mode model applies, NTV cannot be fully corrected with single RMP coil
 - NTV is quadratic in δB and radially nonlocal
- GPEC calculations find NTV torques greater than 1 Nm in some cases
 - Each neutral beam source injects 1—2 Nm of torque
- NTV is very scenario-dependent and nonlinear (NTV torque depends on rotation profile); therefore we do not use NTV calculations to set tolerances

Field Line Pitch at Divertor Plates

- For high-power discharges, pitch angle must be shallow to handle heat flux
- Perturbations to pitch angle at strike points could cause localized hot spots
- Perturbations to pitch angle (including plasma response) calculated by M3D-C1
- The biggest perturbation to pitch angle are caused by misalignment of coils near the divertor (i.e. PF1, PF2) cause
- Plasma response does not strongly affect pitch angle
 - "Vacuum" field analysis is usually good enough

Divertor Footprints

 TRIP3D calculates divertor footprint using perturbed equilibrium from M3D-C1

- Footprint area scales roughly linearly with error field
- Error fields that elicit strong plasma response (i.e. PF4, PF5 & TF) cause the biggest perturbation to the footprints

Alignment Tolerances Based on Total Resonant Field Criterion

 Maximum shift or tilt of individual coil before total resonant field exceeds that produced by 1 kA-turn in RMP coil

Magnetic Pitch Angle Perturbation Criterion

 Maximum shift or tilt of individual coil before perturbation to magnetic pitch exceeds 10% of axisymmetric value

Summary

- Error fields (EFs) were found to affect performance of NSTX-U in 2016
- EF correction was challenging due to multi-mode, time-dependent plasma response
- Extensive metrology carried out to determine EF sources
- IPEC/GPEC and M3D-C1 modeling used to evaluate impact of Efs
- TF, PF5, and PF4 alignments found to have largest impact on resonant fields (braking / locking) and divertor footprints
- TF, PF1, and PF2 alignment found to have largest impact on magnetic pitch angle at divertors
- Modeling used to set engineering tolerances for magnets and PFCs

