

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Rotation-induced electrostatic-potential and its effects on E_r, n_Z & P_{rad} asymmetries in NSTX

L. F. Delgado-Aparicio¹, R. E. Bell¹, G. J. Kramer¹, M. Podestà¹, B. P. LeBlanc¹, A. Diallo¹, B. Stratton¹, S. Paul¹⁺, S. Kaye¹, S. Gerhardt¹, J. Menard¹, H. Yamazaki¹, Y. Takase² and M. Ono¹

¹Princeton Plasma Physics Laboratory, Princeton, NJ, 08540, USA ²The University of Tokyo, Graduate School of Frontier Sciences, Kashiwa 277-8561, Japan

> 27th IAEA-FEC, 21-27 October 2018 Mahatma Mandir Conference Centre, Ahmedabad, India

Background

- With the selection of W for the divertor in ITER, understanding the sources, transport, confinement of high-Z impurities is crucial to ITER success.
- It is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation.
- Controlling Z-transport to avoid accumulation is necessary to achieve and maintain high fusion performance in the presence of high-Z PFCs.
- Understanding poloidal asymmetries and its role and its role reducing the impurity peaking of impurities is highly desirable.
- The impact of the plasma composition on the linear and non-linear stability of gradient driven modes on particle and heat transport has to be assessed, with particular emphasis on the role of the heavy impurities.

Motivation

- Off-axis NBI have been implemented with the main goal of broadening *J* & *p* profiles and study effects on confinement and stability
- Torque will be imparted <u>also</u> at mid-radius possibly increasing the MACH-corrections due to centrifugal forces
- Understanding poloidal asymmetries and its role for the "outward convection" of impurities is highly desirable.
- \circ An electrostatic potential ($\Delta \phi$) is setup mainly between electron, deuterium ions and low-Z impurities (e.g. C, B).
- $\circ\,$ The impact of a reduction in the underline turbulence due to the $E_{\Delta\phi}xB$ shearing rates should be explored
- Impact operation with high-Z PFCs.

Asymmetry in the P_{rad} density with off-axis accumulation has been measured in NSTX

- o Experimental P_{rad} profile is asymmetric: off-axis peaking !
- Measured P_{rad}(r) and asymmetry can not be explained only as a function the D+C content
- For t~0.7 s: P_{rad,0}~70 mW/cm³
 P_{rad,edge}~60-140 mW/cm³ (most probably is much higher)

Mathematical formalism

- The transport equations retaining strong rotation (V_φ~V_{th}) were first derived by Hinton and Wong [PoF'85] via extension of Hazeltine's original NCLASS treatment [Plasma Phys.'73].
- The density at a given flux surface can be written as (see E. Belli, PPCF'09):

$$n_j(\theta) = n_j(\theta = 0) \exp\left(\frac{\omega_0^2 [R^2(\theta) - R^2(\theta = 0)]}{2V_{th,j}^2} - \frac{eZ_j \Delta \varphi(\theta)}{T_j}\right)$$

- $n_j(\theta=0)$ is the impurity density profile at the equatorial-midplane. As a result of quasi-neutrality, $\Delta \varphi(\theta)$ is a poloidal electrostatic potential generated to balance the density asymmetries ($\Delta \varphi(\theta)=\varphi(\theta)-\varphi(\theta=0)$).
- **STEPS**:
- i. Assume T_j and ω_0 are flux surface functions (ψ). Find n_D profiles using the experimental values of n_e and n_C (@ midplane first)
- ii. Solve the quasi-neutrality condition for $\Delta \phi(\theta)$ sequentially at each value of θ
- iii. Assume arbitrary n_z profiles at trace-limit ($\alpha_z = \delta Z_{eff} = \langle Z \rangle^2 n_z / n_e \ll 1$): n_i($\theta = 0$)
- iv. Map particle density profiles asumming also $\langle Z \rangle = \langle Z \rangle (T_e)$
- v. Map radiated power density using: $P_{rad} = n_e n_Z L_Z(T_e)$

Mapping of mid-plane data in 2D is needed to account for centrifugal asymmetries in n_z

Mapping of mid-plane data agrees well with experimental MPTS and CHERS data

$T_{e,C}$ are mapped on $\Psi(R,Z)$ while n_e shows small asymmetry due to centrifugal effects

NSTX-U

L. F. Delgado-Aparicio, 27th IAEA-FEC, 10/21-27/2018 Ahmedabad, India

Measured n_C and inferred n_D ($\approx n_e$ -6 n_C) show core effects from centrifugal effects

NSTX-U

$\Delta \phi$ from data is stronger than obtained using trace-limit & ad-hoc approximations

NSTX-U

L. F. Delgado-Aparicio, 27th IAEA-FEC, 10/21-27/2018 Ahmedabad, India

Time-dependent solution for $\Delta \phi$ shows in/out asymmetry evolution with strong ω^2 scaling

NSTX-U

L. F. Delgado-Aparicio, 27th IAEA-FEC, 10/21-27/2018 Ahmedabad, India

Change in the plasma potential (φ)and radial electric field (E_r) is <u>very small</u> (~ 5%)

Change in radial electric field ($\Delta E_r/E_r \sim 5\%$) is consistent with analytic scaling $\propto \omega_{\phi}(r)/\Omega_{i,0}$

 The rotation-induced electrostatic potential and related change of the local electric field can be easily calculated as:

$$\Delta\varphi(r,\theta=\pi) \equiv \frac{\mathcal{C}T_e}{T_e+T_i} \frac{m_i \omega_{\phi}^2}{2e} \left(R^2 - R_0^{*2}\right) \approx -2\mathcal{C}R_0 r \frac{T_e}{T_e+T_i} \frac{m_i}{e} \omega_{\phi}^2$$
$$\Delta E_r(r,\theta=\pi) \equiv -\nabla_r (\Delta\varphi(r,\theta=\pi)) = 2\mathcal{C}R_0 \frac{T_e}{T_e+T_i} \frac{m_i}{e} \omega_{\phi}^2 \left(1 + 2r/L_{\omega_{\phi}}\right)$$

• The E_r in NSTX is mainly determined by the $V\phi B\theta$ term:

$$E_r \approx V_{\phi} B_{\theta} \sim \frac{R_0 r^2}{q(r) R^2} \omega_{\phi} B_{\phi,0}$$

• Using the equations shown above and $T_e/(T_e + T_i) \sim 0.45$:

$$\Rightarrow \frac{\Delta E_r}{E_r}(r,\omega_{\phi},\theta=\pi) \sim 0.9\mathcal{C}q(r) \left(\frac{R}{r}\right)^2 \frac{w_{\phi}(r)}{\Omega_{i,0}} \left(1 + \frac{2r}{L_{\omega_{\phi}}}\right)$$

• The ratio of the expressions for the asymmetric Er to the background radial field for $\omega\phi$ =21.5 kHz and $\Omega_{i,0}$ =21.5 MHz is of the order of 5% !!!

 \Rightarrow

n_z asymmetry & its mass-dependences can be estimated using <Z>≈<Z(T_e)> & T_z≈T_C

Core n_z and P_{rad} from medium- to high-Z's will be strongly affected by centrifugal forces

Summary

 $_{\odot}$ The computation of rotation-induced electrostatic potentials is being used to study the associated two-dimensional distribution of impurity density asymmetries in NSTX.

 \circ This calculation relies on flux-surface quantities like Te, Ti and $\omega\phi$. The iterative process finds the 2D density profiles and the electrostatic potentials $(\Delta\phi)$ self-consistently assuming poloidal variation due to centrifugal forces.

 $_{\odot}$ The depth of the potential well can reach -110 to -280 V for core NSTX rotation between 180 – 360 km/s but remains very small if one compares with the core plasma potential or the energy of fast ions.

 The net-change of the plasma potential and radial electric field is of the order of just 5-6% and in accordance with a simple theoretical calculation.

 \circ This computation is being used to increase our understanding of asymmetries and the reduction of Z-peaking, to examine the effect of $\Delta \phi$ possibly changing the heat and particle transport, radiation asymmetries before tearing mode onsets, as well as to aid the design of new diagnostics for NSTX-U.