Fusion Energy Development Applications **Utilizing the Spherical Tokamak**and Associated Research Needs and Tools

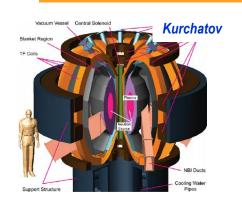
27th IAEA Fusion Energy Conference - IAEA CN-258

Paper Number OV/P-6

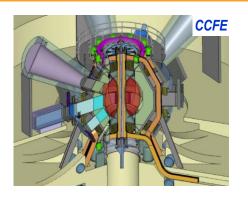
J.E. Menard, et al.

Collaborative and international effort including 23 co-authors

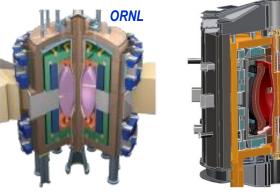
J.E. MENARD, R. MAJESKI, M. ONO Princeton Plasma Physics Laboratory Princeton, NJ USA	Y. NAGAYAMA Nihon University Tokyo, Japan
N.N. BAKHAREV, V.K. GUSEV Ioffe Institute Saint Petersburg, Russia	Y. ONO, Y. TAKASE The University of Tokyo Tokyo, Japan
M. GRYAZNEVICH, D. KINGHAM, S. MCNAMARA, P. THOMAS Tokamak Energy Ltd Oxfordshire, United Kingdom	M. REINKE Oak Ridge National Laboratory Oak Ridge, TN, USA
K. HANADA Kyushu University Fukuoka, Japan	K. TOBITA National Inst. for Quantum & Radiological Science & Technology Aomori, Japan
J. HARRISON, B. LLOYD Culham Centre for Fusion Energy (CCFE) Oxfordshire, United Kingdom	Z. GAO Tsinghua University Beijing, China
Y.S. HWANG Seoul National University Seoul, South Korea	F. ALLADIO ENEA Rome, Italy
B. LIPSCHULTZ, H. WILSON (also CCFE) University of York York, United Kingdom	R.J. FONCK University of Wisconsin-Madison Madison, WI, USA

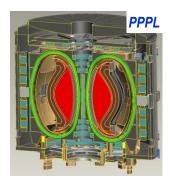

Abstract / Overview

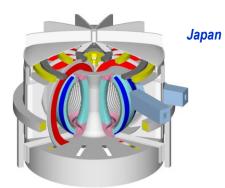
The fusion community is assessing the suitability of the ST for applications to advance fusion energy including the development of:

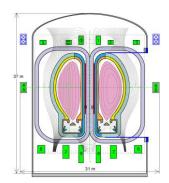

- 1. Solutions for the plasma-material-interface (PMI) challenge
- 2. Fusion neutron source / Fusion-fission hybrid systems
- 3. Fusion components capable of withstanding high fusion neutron flux/fluence including breeding blankets (Component Test / Fusion Nuclear Science Facility)
- 4. Demonstrating electricity break-even from a pure fusion system (Pilot Plant)
- 5. Electricity production at industrial levels in modular fusion power plants
- 6. Electricity production at industrial levels in larger-scale fusion power plants

This range of fusion energy development applications utilizing the ST is described, common application-driven research needs discussed, upcoming and recently achieved ST facility capabilities and relevant highlights described, and near-term prioritized ST research directions supporting longer-term fusion energy development applications presented.


Possible next-step ST facilities

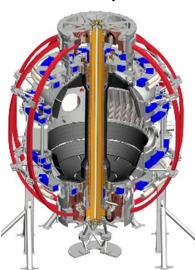

Fusion neutron source (FNS-ST)


Component Test Facility (ST-CTF)

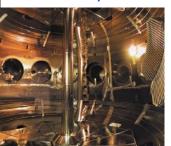

Fusion Nuclear Science Facility (ST-FNSF)

Low-A (A=2) HTS Pilot Plant

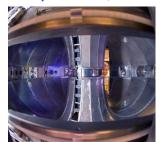
A=2.3 VECTOR



A=1.8 JUST

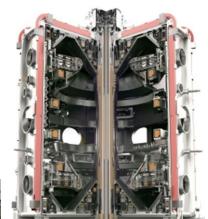

SC low-A reactors

17 existing/near-term international ST facilities


NSTX-U, USA

PEGASUS, USA

LTX-β / CDX-U, USA



Proto

GLOBUS-M2, Russia

MAST-U, UK

PI3, Canada

ST40, UK

SUNIST, China

KTM, Kazakhstan

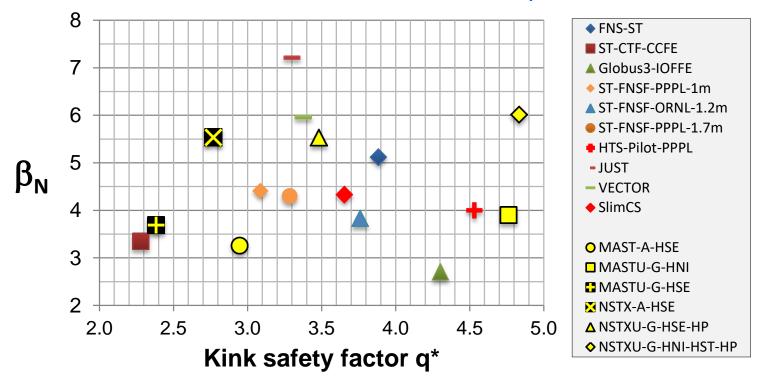
QUEST/CPD, Japan

HIST, Japan

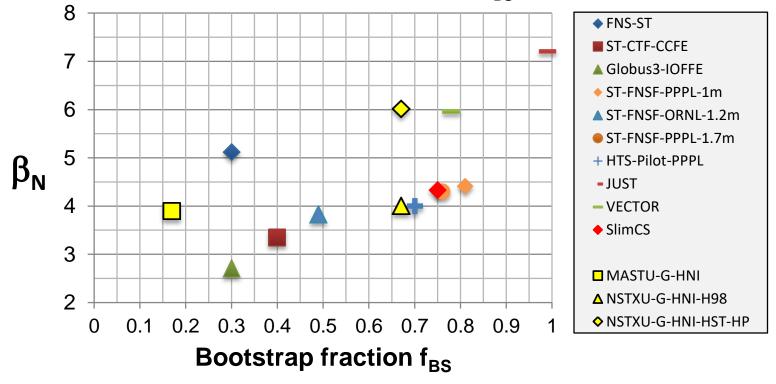
LATE, Japan

TST-2, Japan

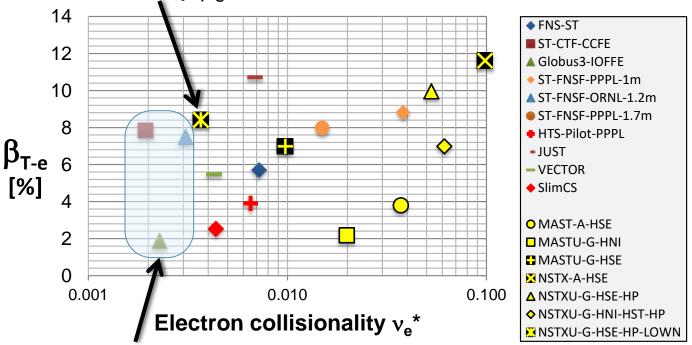
UTST, Japan


TS3/4, Japan

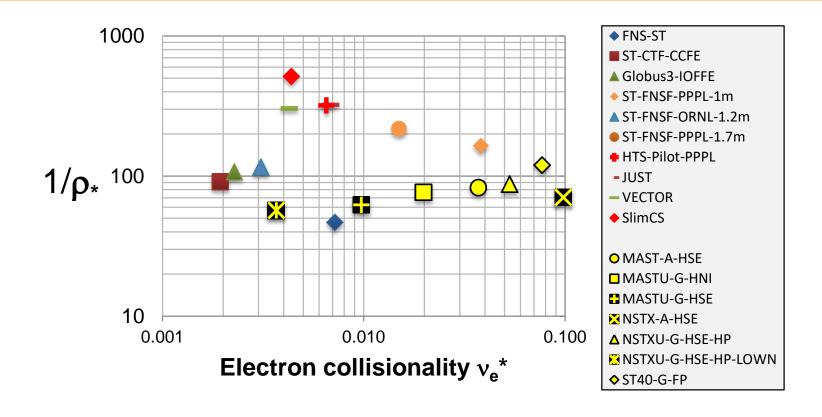
27th IAEA Fusion Energy Conference - October 22-27, 2018 in Ahmedabad, India


Near-term STs support wide MHD stability space spanning nearly all proposed next-step ST configurations

- Exception: β_N = 7 of JUST exceeds expected near-term capabilities
 - Additional studies needed to assess MHD stability of JUST scenarios

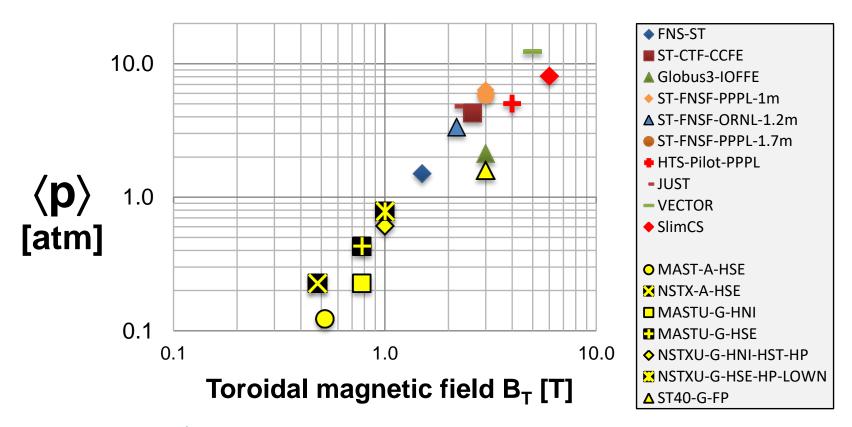

Near-term STs will need to access higher f_{BS} to study scenarios anticipated for steady-state ST reactors

- MAST-U / NSTX-U baseline non-inductive scenarios: $f_{BS} \approx 15-70\%$
- PPPL FNSF/Pilot and Japanese reactors: f_{BS} = 70-95% → research gap


Near-term STs greatly expand access to high β at low v^*

• NSTX-U at full field, power and low density (f_{GW} =0.25) accesses low v_e^* at high electron β_{T-e} spanning pilot plant and reactor regimes

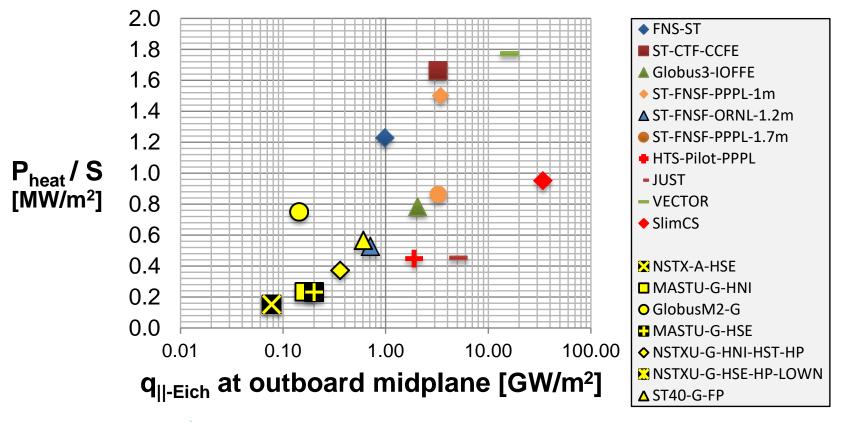
• Low f_{GW} =0.25 CTF/FNSF projected to access ~2x lower v_e^*


Near-term STs cannot access low ρ* of larger next-steps

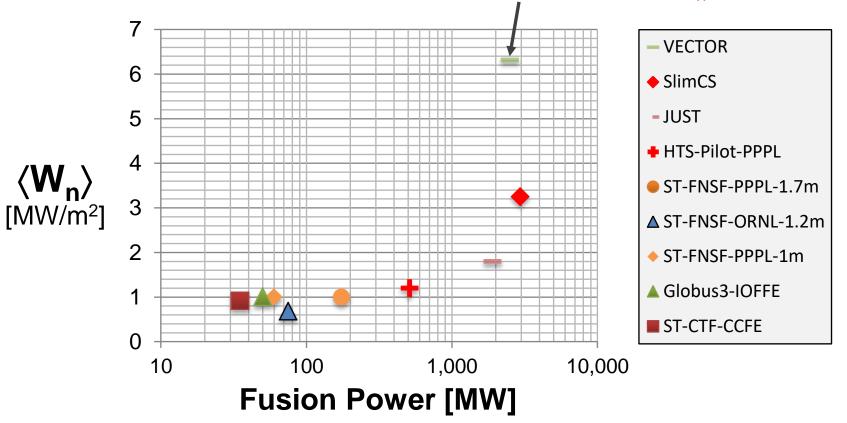
• Larger and/or higher field needed for more reactor-relevant ρ_* , ν^*

Near-term ST facilities targeting $\langle p \rangle \approx 1$ atm

• NSTX-U \leq 0.8 atm, ST-40 \leq 1.6 atm, next-steps: 1.5 to 12 atm



ST-40 could provide important tests of SOL-width scaling


Next-steps extrapolate to higher P/S, very high q_{||}

• Advanced/new divertor concepts needed to mitigate $q_{\parallel} = 1-30GW/m^2$

Most next-steps have neutron wall loading ≈ 1-3 MW/m²

• Exception: (very) compact ST reactor VECTOR with $\langle W_n \rangle \approx 6 \text{ MW/m}^2$

Summary of research needs to support next-steps

- MHD stability, access to low v^* covered by near-term STs
- NSTX-U plans access to high f_{BS} and full non-inductive
 - Need to extend to 70-95% bootstrap fraction for reactor-relevant scenarios
- Near-term STs limited to $1/\rho_{i*} \le \approx 50-120$
 - Need to extend to 200-300 with new facility (?) and/or leverage tokamak results
- Full performance ST-40 could test ST $\lambda_{\rm q}$ scaling to high B_P
- Very high q_{||} in next-steps requires divertor innovation
 - MAST-U Super-X capability and/or liquid metals (LTX- β , long-term NSTX-U)
- Very compact ST reactors (R=3-4m) generate high neutron wall loading and require innovations in blankets and first-wall

Sign-up