TH/P2-16

27th IAEA FUSION ENERGY CONFERENCE Gandhinagar (Ahmedabad) INDIA, October 2018

Numerical simulations of Global Alfven Eigenmode (GAE) stabilization in NSTX-U

E. V. Belova¹, E. D. Fredrickson¹, N. A. Crocker², and the NSTX-U team

Princeton Plasma Physics Laboratory, Princeton NJ, USA
 University of California, Los Angeles, California 90095, USA

NSTX-U off-axis neutral beam suppresses Global Alfven Eigenmodes (GAEs) [E. Fredrickson, PRL 2017]

ISTX-U

• Counter-propagating GAEs are frequently observed in the sub-cyclotron frequency range of $0.1f_{ci}$ up to $0.5f_{ci}$, in NSTX and NSTX-U.

- Driven by cyclotron resonance with beam ions
- New neutral beam sources
 ability to control the fast ion distribution.

Sketch of neutral beam geometry. Original beams in green, labeled 1a, 1b, 1c; new beams for NSTX-U shown in red labeled 2a, 2b and 2c.

- Off-axis neutral beams inject fast ions onto trajectories largely parallel to the magnetic field, with pitch $0.8 < V_{\parallel}/V < 1$.
- Reliable suppression of the counter-propagating GAE when an additional 1.3MW is injected using the outboard beam.

GAE stabilization has been well documented for many NSTX-U shots

Three examples of GAE being suppressed by the injection of one of the three off-axis beam sources. Figure 1(c) also shows that the GAE can reappear when the 2c power is turned off.

The measured GAE suppression time \sim few ms is much smaller than slowing-down time (\sim 50ms), suggesting that it takes relatively few high-pitch fast ions to suppress the GAE.

HYM – HYbrid and MHD code

Applications

- NSTX
 - Sub-cyclotron frequency Alfven eigenmodes (GAE and CAE)
- ICC Theory and Modeling
 - Hybrid simulations of spheromak merging
 - FRC: Effects of beam ions on stability
 - Rotation control
 - n=2 rotational and n=1 wobble modes

Code description

- 3-D nonlinear.
- Physical models:
 - Resistive MHD & Hall-MHD
 - Hybrid (fluid electrons, particle ions)
 - MHD/particle (one-fluid thermal plasma, + energetic particle ions)
 - Drift-kinetic particle electrons
- Full-orbit kinetic ions.
- For particles: delta-f / full-f numerical scheme.
- Parallel (3D domain decomposition, MPI)

Self-consistent MHD + fast ions coupling scheme

Background plasma - fluid:

$$\rho \frac{d\mathbf{V}}{dt} = -\nabla p + (\mathbf{j} - \mathbf{j}_b) \times \mathbf{B} - n_b (\mathbf{E} - \eta \mathbf{j})$$

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{j}$$

$$\mathbf{B} = \mathbf{B}_0 + \nabla \times \mathbf{A}$$

$$\partial \mathbf{A} / \partial t = -\mathbf{E}$$

$$\mathbf{j} = \nabla \times \mathbf{B}$$

$$\partial p^{1/\gamma} / \partial t = -\nabla \cdot (\mathbf{V} p^{1/\gamma})$$

$$\partial \rho / \partial t = -\nabla \cdot (\mathbf{V} \rho)$$

Fast ions – delta-F scheme:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}$$
$$\frac{d\mathbf{v}}{dt} = \mathbf{E} - \eta \mathbf{j} + \mathbf{v} \times \mathbf{B}$$

 $w = \delta F / F - \text{particle weight}$ $\frac{dw}{dt} = -(1 - w) \frac{d(\ln F_0)}{dt}$ $F_0 = F_0(\varepsilon, \mu, p_\phi)$

 ρ , **V** and ρ are thermal plasma density, velocity and pressure, n_b and j_b are beam ion density and current, and $n_b << n_e - \text{ is assumed}$.

Self-consistent anisotropic equilibrium including the NBI ions

Grad-Shafranov equation for two-component plasma: MHD plasma (thermal) and fast ions [Belova et al, Phys. Plasmas 2003].

$$\frac{\partial^2 \psi}{\partial z^2} + R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) = -R^2 p' - HH' - GH' + RJ_{b\phi}$$

$$B = \nabla \phi \times \nabla \psi + h \nabla \phi$$

$$h(R, z) = H(\psi) + G(R, z)$$

$$J_{bp} = \nabla G \times \nabla \phi, G - \text{poloidal stream}$$
function

Modifications of equilibrium due to beam ions:

 $+h\nabla\phi$

function

- more peaked current profile,
- anisotropic pressure,
- increase in Shafranov shift

might have indirect effect on stability.

Fast ions – delta-f scheme: $F_0 = F_0(\epsilon, \mu, p_{\phi})$

Equilibrium distribution function $F_0 = F_1(v) F_2(\lambda) F_3(p_{\varphi}, v)$

$$F_{1}(v) = \frac{1}{v^{3} + v_{*}^{3}}, \text{ for } v < v_{0}$$

$$F_{2}(\lambda) = \exp(-(\lambda - \lambda_{0})^{2} / \Delta \lambda^{2})$$

$$F_{3}(p_{\phi}, v) = \frac{(p_{\phi} - p_{0})^{\beta}}{(R_{0}v - \psi_{0} - p_{0})^{\beta}}, \text{ for } p_{\phi} > p_{0}$$

where $v_0 = 2-5v_A$, $v_* = v_0/2$, $\lambda = \mu B_0/\varepsilon$ – pitch angle parameter, $\lambda_0 = 0.5-0.7$ (typical of on-axis beam), and $\mu = \mu_0 + \mu_1$ includes first-order corrections [Littlejohn'81]:

$$\mu = \frac{(\mathbf{v}_{\perp} - \mathbf{v}_{\mathbf{d}})^2}{2B} - \frac{\mu_0 v_{\parallel}}{2B} [\hat{b} \cdot \nabla \times \hat{b} - 2(\hat{a} \cdot \nabla \hat{b}) \cdot \hat{c}]$$

 \mathbf{v}_d is magnetic gradient and curvature drift velo city, $\hat{c} = \mathbf{v}_\perp / v_\perp$, $\hat{a} = \hat{b} \times \hat{c}$.

Parameters are chosen to match TRANSP beam profiles.

() NSTX-U

Simulations have been performed to study the excitation and stabilization of GAEs in the NSTX-U

(a) Spectrogram on magneticfluctuations (n=8-11 counter-GAEs).(b) Rms magnetic fluctuations;

(c) Injected beam power.

NSTX-U

• Simulations using the HYM code have been performed for NSTX-U shot #204707 right before (t=0.44s) and shortly after (t=0.47s) the additional off-axis beam injection.

• Plasma and beam profiles have been chosen to match TRANSP profiles for t=0.44s and t=0.47s.

• The beam ion distribution function matches TRANSP data, with pitch distribution in the form

 $\mathsf{F}_{\mathsf{b}} {\sim} \exp[-(\lambda{-}\lambda_0(\epsilon))^2/\Delta\lambda(\epsilon)^2] - \\$

improved fit includes energy dependence of pitch distribution.

Plasma shape, q- and n_b profiles for NSTX-U shot 204707 t=0.44 from TRANSP and HYM GS solver + FREE_FIX.

NSTX-U linear simulations: n=-10 counter-GAE (t=0.44s)

NSTX-U

HYM reproduces experimentally observed unstable GAEs

(a) Growth rates and (b) frequencies of unstable counter-GAEs from HYM simulations for t=0.44s. Blue line is Doppler-shift corrected frequencies, points – experimental values.

- Simulations reproduce most unstable toroidal mode numbers and GAEs frequencies.
- HYM overestimates growth rates compared experimental analysis by 2-3 times.
- Experimental estimates [Fredrickson, NF 2018]: n=-10 γ/ω_{ci} =0.84% n=-11 γ/ω_{ci} =0.6%
- Growth rates are sensitive to distribution function parameters resonance particles are in 'tail' of distribution.

Improved F_{beam} fit allows more accurate description

- (a)TRANSP fast-ion distribution before the outboard beam injection t=0.44.
- (b)HYM fast-ion distribution from n=-11 GAE simulations; dots show resonant particles.

NSTX-U

- (a)Location of resonant particles in phase space: $\lambda = \mu B_0 / \epsilon$ vs p_{ϕ} .
- (b) Particle weight w ~ δF/F vs orbitaveraged parallel velocity. Particle color corresponds to different energies: from E=0 (purple) to E=90keV (red).

Resonant region is wider in nonlinear phase

Location of resonant particles in phase space; from linearized and nonlinear simulations of n=-11 GAE. Particle color corresponds to different energies: from E=0 (purple) to E=90keV (red); $\langle V_{||} \rangle$ - orbit averaged velocity.

Nonlinear simulations: n=-11 counter-GAE (t=0.44s)

Time evolution of perturbed magnetic field components from nonlinear simulations for n=-11 GAE.

JSTX-U

- Nonlinear simulations show peak saturation amplitudes of δB/B₀~5×10⁻³ at R~1.2m close to the minimum of the Alfvén continuum, and δB/B₀~10⁻³ near the edge at the midplane.
- Unstable modes have shear Alfven polarization in the core, and mixed polarization at the edge.

Experimental amplitudes estimates are comparable to nonlinear simulation results

Time evolution of peak amplitude of n=-11 GAE in NSTX-U shot 204707, based on reflectometer reconstructions [E. Fredrickson]. • Approximate peak amplitudes averaged over the time window. A correction factor (the ratio between peak and average amplitude) varied between 1.2 and 2.7. 14

- Experimental estimates of the peak mode amplitudes are δB/B₀≈2.7•10⁻³ for the n=-10 and δB/B₀≈(1-2)•10⁻³ for the n=-11 modes at t~0.44s.
- Large uncertainty is in the reflectometer reconstructions which depend on accurate density profile gradient data.

HYM simulations reproduce experimental finding: off-axis neutral beam injection reliably and strongly suppresses unstable GAEs

- Off-axis beam injection has been modelled by adding beam ions with distribution $F_{add} \sim exp[-\lambda^2/\Delta\lambda \ (\epsilon)^2]$, and varying density.
- For NSTX-U beam parameters, HYM shows complete linear stabilization of all unstable GAEs.
- In additional simulations, fraction of off-axis beam population of the total fast ion inventory has been varied from 4% to 17%.
- Unstable n=-11 GAE is stabilized when the fraction of the off-axis beam ions is larger than 7%
- Stabilization threshold is lower for lower |n| modes.

Fraction of outboard beam power vs total beam power in NSTX-U was ~24-30%, but the GAEs become suppressed at the point where the fast ion population has increased by 6% (based on the neutron rate increase by 6%) – excellent agreement with simulations.

Time evolution of magnetic energy of n=-11 GAE from HYM simulations for t=0.44s (red), and t=0.47s (blue).

Growth rates of n=-11 (blue), -10 (red), -9 (green) GAEs vs fraction of outboard beam ion population.

GAE stabilization is consistent with analytic predictions

Analytical instability condition: $2 < k_{\perp}\rho_b < 4$ [Gorelenkov,2003] – large pitch particles are stabilizing.

TRANSP fast-ion distribution before and after the outboard beam injection. Fast ions with pitch $v_{\parallel}/v\sim1$ are responsible for GAE suppression [Fredrickson,2017].

NSTX-U

Fast-ion distribution from HYM simulations before the outboard beam injection and for case with N_{add}/N_{tot} =5% (n=9,10 are stable). Cyclotron resonance lines are shown for n=9,10,11 GAEs.

- Simulations confirm robust stabilizing mechanism for beam-driven global Alfvén eigenmodes (GAEs) discovered experimentally in NSTX-U, where new beam sources injecting nearly parallel to magnetic field reliably and strongly suppressed unstable GAEs [E. Fredrickson, PRL 2017].
- GAEs have been linked to flattening of electron temperature profiles and anomalously low central temperature at high beam power in the NSTX.
- Good agreement of simulations with experimental observations:
 - range of toroidal mode numbers, frequencies, and saturation amplitudes of unstable GAEs match the experimentally observed.
- A very effective mechanism for stabilizing GAEs threshold for stabilization of all modes for extra beam is less than 7% of total beam power – demonstrated both experimentally and numerically.
- Relevant to ITER, and other fusion devices where super-Alfvénic fast ions might be present.

