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NSTX-U off-axis neutral beam suppresses Global Alfven
Eigenmodes (GAES) [E. Fredrickson, PRL 2017]
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@ NSTX-U

» Counter-propagating GAEs
are frequently observed in the
sub-cyclotron frequency range
of 0.1f, up to 0.57, in NSTX
and NSTX-U.

» Driven by cyclotron
resonance with beam ions

* New neutral beam sources
— ability to control the fast ion
distribution.
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Sketch of neutral beam geometry.
Original beams in green, labeled
1a, 1b, 1c; new beams for NSTX-U
shown in red labeled 2a, 2b and 2c.

» Off-axis neutral beams inject fast ions onto
trajectories largely parallel to the magnetic field, with

pitch 0.8<V,/V<1.

* Reliable suppression of the counter-propagating
GAE when an additional 1.3MW is injected using the

outboard beam.
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GAE stabilization has been well documented for many NSTX-U shots
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Three examples of GAE being suppressed by the injection of one of the three off-axis beam sources.
Figure 1(c) also shows that the GAE can reappear when the 2c power is turned off.

The measured GAE suppression time ~ few ms is much smaller than slowing-down time
(~50ms), suggesting that it takes relatively few high-pitch fast ions to suppress the GAE.
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HYM — HYbrid and MHD code

Applications

*« NSTX

- Sub-cyclotron frequency Alfven
eigenmodes (GAE and CAE)

 |CC Theory and Modeling
- Hybrid simulations of spheromak
merging
- FRC: Effects of beam ions on
stability
- Rotation control

- n=2 rotational and n=1 wobble
modes
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Code description

e 3-D nonlinear.

Physical models:

- Resistive MHD & Hall-MHD

- Hybrid (fluid electrons, particle ions)

- MHD/particle (one-fluid thermal
plasma, + energetic particle ions)

- Drift-kinetic particle electrons
Full-orbit kinetic ions.

For particles: delta-f / full-f numerical
scheme.

Parallel (3D domain decomposition,
MPI)
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Self-consistent MHD + fast ions coupling scheme

Background plasma - fluid: Fast ions — delta-F scheme:
dVv .. . dx
p— p+(=1J) n, (E —1j) =7
dv )
E=-VxB+7pj E_E_U‘H_VXB
B=B,+VxA
OA /o0t = —E w=0F/F -particle weight
J=VxB dw d(In F,)
1/y . 1/y —:—(l—w)
ap''7 /ot =V -(Vp''") Jf i

op /6t = -V - (Vp) P )
0o = Lo\EH, Py

p, V and p are thermal plasma density, velocity and pressure, n, and j, are beam ion
density and current, and n, << n, —is assumed.
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Self-consistent anisotropic equilibrium including the NBI ions

Grad-Shafranov equation for two-component plasma:
MHD plasma (thermal) and fast ions [Belova et al, Phys. Plasmas 2003].

B=V¢xVy+hVe
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Beam effects pr =VG x V¢ ’ G—foloi.dal stream
unction

Modifications of equilibrium due to beam ions:

- more peaked current profile,
- anisotropic pressure,
- increase in Shafranov shift

might have indirect effect on stability.
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Fast ions — delta-f scheme: Fy=F(€,u,p,)

Equilibrium distribution function F, = F,(v) F',(2) F3(p,,v)

1
F(v)=———7, for v<y,
v+

F,(1)=exp(— (4 - /10)2 /Aﬂz)
(p¢ _po)ﬂ
(Ryv—v, _po)ﬂ ,

F3(p¢,v): for Py > P

where v, = 2-5v,, v«=v,/2, A= uBye — pitch angle parameter, A,= 0.5-0.7 (typical of on-axis

beam), and u= u, + u,; includes first-order corrections [Littlejohn’81]:

(v, — Vd)2 _HoY
2B 2B

v, is magnetic gradient and curvature drift velo city, ¢c=v /v , a= bxé .

[b-Vxb—2(G-Vb)-¢]

H =
Parameters are chosen to match TRANSP beam profiles.
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Simulations have been performed to study the excitation
and stabilization of GAEs in the NSTX-U
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(a) Spectrogram on magnetic dependence of pitch distribution. Plasma shape, g- and n, profiles
fluctuations (n=8-11 Counter-GAES). for NSTX-U shot 204707 t=0.44
(b) Rms magnetic fluctuations; from TRANSP and HYM GS

(c) Injected beam power. solver + FREE_FIX.
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NSTX-U linear simulations: n=-10 counter-GAE (t=0.44s)
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HYM reproduces experimentally observed unstable GAEs

HYM #204707 t=0.44
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(a) Growth rates and (b) frequencies of
unstable counter-GAEs from HYM
simulations for t=0.44s. Blue line is
Doppler-shift corrected frequencies,
points — experimental values.
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« Simulations reproduce most unstable
toroidal mode numbers and GAEs
frequencies.

* HYM overestimates growth rates
compared experimental analysis by 2-3
times.

« Experimental estimates [Fredrickson,
NF 2018]:

n=-10 y/w,=0.84%

n=-11 y/w,=0.6%

» Growth rates are sensitive to
distribution function parameters —
resonance particles are in ‘tail’ of
distribution.
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Improved F,__,, fit allows more accurate description

Resonant
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beam injection t=0.44. space: A=UB./€ VS g g
(b)HYM fast-ion distribution from n=-11 GAE (b) Partide weicht w - BF/F. vs orbit
simulations; dots show resonant particles. averaged parallel velocity. Particle color

corresponds to different energies: from
E=0 (purple) to E=90keV (red).
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Resonant region is wider in nonlinear phase
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Location of resonant particles in phase space; from linearized and nonlinear

simulations of n=-11 GAE. Particle color corresponds to different energies: from

E=0 (purple) to E=90keV (red); <V/» - orbit averaged velocity. 6)
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Nonlinear simulations: n=-11 counter-GAE (t=0.44s)
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Time evolution of perturbed magnetic
field components from nonlinear
simulations for n=-11 GAE.
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Experimental amplitudes estimates are comparable
to nonlinear simulation results
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Time evolution of peak amplitude of n=-11
GAE in NSTX-U shot 204707, based on

reflectometer reconstructions [E. Fredrickson].

Approximate peak amplitudes
averaged over the time window. A
correction factor (the ratio between
peak and average amplitude) varied
between 1.2 and 2.7.

Experimental estimates of the peak
mode amplitudes are 6B/B,=2.7+10-3
for the n=-10 and 6B/B,=~(1-2)*10-3
for the n=-11 modes at t~0.44s.

Large uncertainty is in the
reflectometer reconstructions which
depend on accurate density profile
gradient data.



HYM simulations reproduce experimental finding: off-axis neutral beam
injection reliably and strongly suppresses unstable GAEs

 Off-axis beam injection has been modelled by
adding beam ions with distribution F_ 4 ~ exp[-
A2/AAN (€)?], and varying density.

* For NSTX-U beam parameters, HYM shows
complete linear stabilization of all unstable GAEs.

* |n additional simulations, fraction of off-axis
beam population of the total fast ion inventory has
been varied from 4% to 17%.

» Unstable n=-11 GAE is stabilized when the
fraction of the off-axis beam ions is larger than 7%

 Stabilization threshold is lower for lower |n|
modes.
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Time evolution of magnetic energy of n=-11
GAE from HYM simulations for t=0.44s (red),
and t=0.47s (blue).
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Fraction of outboard beam power vs total beam
power in NSTX-U was ~24-30%, but the GAEs
become suppressed at the point where the fast ion
population has increased by 6% (based on the
neutron rate increase by 6%) — excellent
agreement with simulations.
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GAE stabilization is consistent with analytic predictions

Analytical instability condition: 2 < k,p,< 4 [Gorelenkov,2003] — large pitch particles are

stabilizing.
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TRANSP fast-ion distribution before and
after the outboard beam injection. Fast ions
with pitch v,/v~1 are responsible for GAE
suppression [Fredrickson,2017].
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Summary

« Simulations confirm robust stabilizing mechanism for beam-driven global
Alfvén eigenmodes (GAEs) discovered experimentally in NSTX-U, where
new beam sources injecting nearly parallel to magnetic field reliably and
strongly suppressed unstable GAEs [E. Fredrickson, PRL 2017].

« GAEs have been linked to flattening of electron temperature profiles and
anomalously low central temperature at high beam power in the NSTX.

« Good agreement of simulations with experimental observations:

- range of toroidal mode numbers, frequencies, and saturation amplitudes
of unstable GAEs match the experimentally observed.

» A very effective mechanism for stabilizing GAEs - threshold for stabilization
of all modes for extra beam is less than 7% of total beam power —
demonstrated both experimentally and numerically.

* Relevant to ITER, and other fusion devices where super-Alfvénic fast ions
might be present.
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