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The XGC1 Gyrokinetic Code
• Total-f PIC, combined with continuum technology

- Continuum grid used for nonlinear collision, f0 
evaluation, gyroaveraging, ...

• In contact with material wall, having heat and 
momentum source in the core
- Far-from-equilibrium (non-Maxwellian)
- Neutral particle recycling & transport, atomic interact.

• Magnetic X-point and separatrix (qà∞)
- X-point orbit loss from pedestal

• Total-f: Overlapping multi-scale, multiphysics in 
space-time: big physics per simulation time step.

• Unstructured triangular mesh
• Solver: PETSc with Hypre and multigrid (only ~2% of total 

computing time)
• Large simulation-size (≳10k particles per grid-vertex) 

per time-step: ideal for extreme scale computing
• Most of the production runs are large-scale: on >50% 

Titan, >50% Theta, and ~50% Cori.
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Validation of XGC1, and a surprising result for ITER

• XGC1 predictions agreed well with the existing experimental results from 
the three large US tokamaks + a JET high-current (4.5MA) case

• Divertor heat-flux width was dominated by the ion neoclassical dynamics
- X-point orbit-loss type of ion-drift dynamics is the dominant mechanism
- Turbulent e-transport is a “follower,” for ambipolar transport & determining E-field  

• λq physics agreed with the previous picture presented by
- XGC0: Report on 2010 US-DOE Joint Research Target study

[A. Pankin et al., Phys. Plasmas 22, 092511 (2015)]
- Heuristic ion-drift model: R. Goldston, NF 52, 013009 (2012)

• XGC1 finds ubiquitous blobby turbulence

However, the same XGC1 on 15MA ITER
produced λq

Eich ≳ 6λq
Eich. Why???

à Triggered a deeper study

• Size effect: parallel and neutral physics
• ∆banana/a effect: perpendicular physics

ITER

JET 79692
4.5MA
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Similarly to other existing tokamak cases, 
λq,i

XGC > λq,e
XGC in the JET 4.5MA discharge 

(and the edge turbulence is blobby)

JET 
4.5MA

Measured before the entrance to the 
subgrid scale (quasi-neutral and 
Debye) sheath layer
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Sensitivity of λq to initial plasma profiles on JET
The left-figure at the bottom has ~2X narrower pedestal width, but yields a similar λq at the 
end, due to the turbulence & background self-organization capability of the total-f XGC1.

Conclusion from this and the ITER 
studies: For Total-f XGC, approximately 
correct intial plasma profile around the 
separatrix is good enough. 

Experimental input2X narrower pedestal 
used for input

Two different 
input profiles
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• The MHD-limited pedestal was too 
steep: too strong turbulence à too high
a heat flow across the separatrix and to 
divertor target ~700MW.
− But λq

MHD was still ~6mm
• XGC1 eventually found a self-

organized plasma profile across the 
separatrix; which satisfies, 
approximately, turbulence saturation 
across sepratrix, power balance 
between separatrix and divertor at 
~100MW, and λq saturation.
à λq is ≈6mm, not ≲1mm!!!

XGC study on a 15MA ITER model plasma

ΨΝ

Final evolution

Final evolution

Final input profile

Caution: approximate turbulence and 
power balance achieved only at ψN>0.96. 
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• The XGC1-obtained (approximate) pedestal width at ITER 15MA is ≳ 2x MHD/Fluid 
pedestal width

− EM effect needs to be studied later

• λq ~ 6mm in both MHD and kinetic pedestals

Input comparison between the “MHD/fluid-limited 
ITER-standard” pedestal  and an electrostatic-XGC1 

relaxed pedestal at 15MA

EPED-type input

EPED
-type input, T

i =T
e

ITER-standard  pressure

Original Ti=TeFinal input to XGC
Final input to XGC

Final input to XGC

Caution: XGC1 density and temperatures are meaningful only at ψN>0.96. 

ΨΝ
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XGC finds λq,e≳λq,i: 15MA ITER is different from the present tokamaks.
• Heat flux is completely dominated by the electrons in both 

magnitude and width.  
What is going on?
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• To check if the enhanced λq in the full-current ITER is from the “size effect” 
or from the “∆banana/a effect,” a 5MA initial H-mode operation in ITER has 
been simulated 

à λq agrees with the present tokamaks à clearly not the size effect
à Difference in turbulence is from the ∆banana/a effect.

• The “absolute size effect” is 
related to the parallel physics 
and the neutral particle 
transport.

• The “∆banana/a  effect” is 
mostly from the perpendicular 
physics.

• Exclusion of the pure ∆banana
effect will be validated (or 
invalidated) against the recent 
highest current C-Mod plasma.

1st ITER H-mode

XGC study on a 5MA ITER model plasma
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Evidence for an edge physics bifurcation 
between the higer and lower ∆banana/a values.

In the low-current ITER, edge tubulence across the separatrix is blob type and 
the ExB shearing rate is high.  In the high-current ITER, the turbulence is 
streamer type and the ExB shearing rate is low.
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strong ExB shearing 
around ΨN ~1 

DIII-D 1.5MA
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In 15MA ITER edge at ΨN~1, the plasma 
pedestal is supported by toroidal flow ~0.1 Vi, 

generated by X-loss
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Radial force balance 
between toroidal 
flow and plasma 
gradients

Final

ne and T pedestals with little Er, 
supported by toroidal rotation.
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Unlike for the blobby turbulence in present tokamaks, the 
full-current ITER contains a strong non-adiabatic 

electron response across the magnetic separatrix, 
as evidenced by a large phase difference between δn and δΦ (≳π/2) (left) and a 
strong de-correlation between their amplitudes (right).
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There appears to be a “bifurcation” from Blob- to Streamer-type 
edge turbulence somewhere between JET and ITER, arising from 
nonlinear interaction between weaker VExB

’ and TEM turbulence.

• Weaker X-loss driven ExB-shearing-rate 
from the size effect γΕχΒ

X-loss ∝(vi/a) ρi/a
• Failure to stablize TEM turbulence: 

γExB
X-loss/γmode∝ ∆banana/a 

• TEM turbulence induces large particle 
flux

• Weakens the ExB shearing rate further.
• Turbulence becomes stronger

à Nonlinear bifurcation.  

When the ion neoclassical X-loss 
becomes too weak, the edge plasma 
self-organizes to  expell the heat 
through microturbulence.



Definition of λq should include dissipation by 
the X-point ExB circulation

• The upstream-downstream plasma relation is not explained by fluid equations 
along the field lines, even in sheath-limited regime

− Experimental: J. Canik et al, PoP 2017
− Gyrokinetic: Churchill [TH/P7-26]; non-Maxwellian+drift correction is 

severe, CGL is invalid
• New: ExB circulation around the X-point, breaking the flux-tube relationship

• Chang, Ku, Churchill, submitted to PoP, gyrokinetic XGC, X-loss
• Schaffer et al., PoP 2001, experimental fast probe

Schaffer’s fast probe, 
DIII-D L-mode

Φ0,m>0 in XGC1,
C-Mod H-mode

XGCa gyrokinetic, DIII-D: CGL does 
not conserve parallel momentum

Momentum conservation
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NSTX-U,	high	δ
NSTX-U, high δ with 

divertor cooling

TEM effect on wider λq is supported in NSTX-U plasmas 
• A high triangularity (δX≈0.8) NSTX 1MA discharge has been selected as a 

reference for NSTX-U plasma models:
• 1.5MA and 2MA NSTX-U plasma profiles are projected from 
• Unlike other tokamaks, NSTX-U with δX≈0.8 shows 

enhanced λq, and a reduction by divertor-chamber cooling
à A good testbed for a λq physics study

NSTX #139047 as a reference 
case for an NSTX-U projection
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In the high current (2MA) NSTX-U case without the divertor-
chamber cooling, where λq ~2.5 λq

Eich,  the edge turbulence is not 
the usual blobs and φ00 is almost flat across the separatrix
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At lower IP (=1MA) NSTX, the edge turbulence becomes blobby and φ00 is more 
sheared across the separatrix surface ß higher ∆banana/a 

• Stronger TEM drive in a spherical tokamak 
à earlier bifurcation to TEM turbulence
Divertor chamber cooling weakens TEM.
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In the NSTX 1MA reference case with the same 
plasma shape as for NSTX-U, turbulence is blobby.
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Strong ExB 
shearing 
across 
separatrix

ExB shearing layer has 
moved radially outward.

Turbulence property across separatrix is sensitive to the local 
ExB shearing rate
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Conclusion and discussion
• The XGC-predicted heat-flux widths have been well-validated on 

the three major US tokamaks: NSTX, DIII-D, C-Mod
• Prediction for 15MA ITER: λq

XGC(15MA ITER) ≳ 6λq
Eich(14)(15MA ITER)

• Since XGC is a total-f code, λqXGC is not very sensitive to the initial 
plasma profile, as long as it is reasonable.

• Physics reason for broader λq
XGC in 15MA ITER than 5MA is 

revealed
− As IP increases, ∆i,banana/a becomes smaller and weakens the X-

loss driven Er shearing rate across separatrix, and the trapped 
electron turbulence surfaces up to broaden λq

XGC 

• NSTX-U seems to confirm this physics reason
• The flux tube argument between the upstream-downstream SOL 

width needs reconsideration
• Need other validation ideas: How can we reduce the Er shearing-

rate across the separatrix surface in the present tokamaks?
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Extra slides
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Outline
• The XGC-predicted heat-flux widths have been well-validated

on the three major US tokamaks: NSTX, DIII-D, C-Mod
• Prediction for 15MA ITER: λq

XGC ≳ 6λq
Eich(14)

• Prediction for high-current JET: λqXGC follows λqEich(14)

• Since XGC is a total-f code, λq
XGC is not very sensitivity to the 

initial plasma profile, as long as it is reasonable.
• Prediction for 5MA ITER: λq

XGC follows λq
Eich(14)

• Physics reason for λqXGC ≳ 6λqEich(14) in 15MA ITER is revealed
• NSTX-U appears to confirm the physics reason
• Flux tube argument between upstream-downstream needs 

reconsideration
− Definition of λq should include dissipation by the X-point ExB 

circulation
• Conclusion and discussion
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Prediction on full-current JET: λq
XGC from the 4.5MA discharge follows 

λq
Eich (14), as other existing tokamaks do [JET will measure λq(exp)]

Could not conclude if the effect is from the size or a/ρip effect,

since both of them are smaller in the 4.5MA JET than in the full-current ITER

XGC1

JET 79692
Size effect? No.



XGC1 can study divertor heat-flux at unprecedented detail. 

22



For this argument, let’s use the drift kinetic equation for simplicity
∂f/∂t+(v||+vd)∙∇f + (e/m)E|| v|| ∂ f/∂w = C(f,f) + Sources/Sinks.

In near-thermal equilibrium, take the “transport ordering” (= diffusive ordering): 

∂f/∂t=O(δ2), S=O(δ2), with δ<<1

• Let f=f0+δf, with δf / fo=O(δ), δ <<1, vd /v|| = O(δ), E||/m = O(δ or δ2)

O(δ0): v|| ∙∇f0 = C(f0,f0) à f0=fM : H-theorem
O(δ1): ∂δf/∂t + v||∙∇δf + vd ∙∇f0 + (e/m) E||v|| ∂ fo/∂w = C(δf)

² Perturbative kinetic theories then yield transport coefficients =O(δ2)
² In this case, fluid transport equations (foà n,T) can be used with analytic or 

delta-f kinetic closures

à δf-GK simulation is cheaper per physics time (small computers), but 
equilibrates on a slow time scale O(δ1ωbi)-1 ~ ms: Core GK simulation time 
scale
A meaningful time evolution of f0 can only be obtained in a long 
“transport-time” scale O(δ2ωbi)-1: Not yet reachable by GK simulation; 
Multiscale time integration is needed.

Time-scale issue: In the core plasma, f evolves slowly
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n Ion radial orbit excursion width (~10ρi) ~ pedestal & scrape-off layer width;
unconfined orbits with neutral recycling à Non-Maxwellian

All terms can be large: ~ either O(ωbi) or O(νC) 
• v||∙∇f ~ vd∙∇f ~ C(f,f) ~ eE||v||/m ∂ f/∂w ~ O(ωbi) ~ 0.05 ms in DIII-D

• f  equilibrates very fast and stiff: ∂f/∂t + (v||+vd)∙∇f (e/m) + E||v||∂ f/∂w = C(f,f)+S
• Higher order corrections are unimportant

In edge, f equilibrates in zeroth-order time-scale 

Edge turbulence around 
the separatrix saturates 
before the central core 
turbulence has even 
started to form.

n Fast-evolving non-equilib. kinetic system
• Fluid equations (with diffusive 

closure) yields an artificially long 
time scale.
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Ideal for extreme scale computing:  
big physics in small number of time 
steps.
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Fully Implicit EM XGC1 will answer the EM effect on λq
• We first implemented Chen-Parker’s split weight scheme
- The “cancellation problem” was an issue when XGC stresses the long-wave 

length physics, too.
• We then implemented two other EM algorithms that do not suffer from the 

cancellation problem
- Hybrid EM algorithm for fluid-electron type turbulence (fluid electrons + GK ions)

• In production
- Fully implicit EM algorithm by L. Chacon

• At the moment, the electron time-stepping algorithm is ~5X more expensive 
than the present ES time-stepping

• Wating for Summit


