

27th IAEA-FEC, Gandhingar, India, Oct. 22-27, 2018

Wide divertor heat-flux width in ITER from turbulence bifurcation across separatrix

<u>C.S. Chang</u>¹, M. Churchill¹, R. Hager¹, S. Ku¹, R. Maingi¹, J. Menard¹, A. Loarte², R. Pitts², V. Parail³, M. Romanelli³, F. Köchl⁴, and JET Contributors⁵

¹Princeton Plasma Physics Laboratory
 ²ITER Organization, France
 ³Culham Centre for Fusion Energy, UK
 ⁴UK Atomic Energy Authority, UK
 ⁵See the author list of "X. Litaudon et al 2017 Nucl. Fusion 57 102001

The XGC1 Gyrokinetic Code

Total-f PIC, combined with continuum technology

- Continuum grid used for nonlinear collision, f₀ evaluation, gyroaveraging, ...
- In contact with material wall, having heat and momentum source in the core
 - Far-from-equilibrium (non-Maxwellian)
 - Neutral particle recycling & transport, atomic interact.

Magnetic X-point and separatrix (q→∞)

- X-point orbit loss from pedestal
- Total-f: Overlapping multi-scale, multiphysics in space-time: big physics per simulation time step.
- Unstructured triangular mesh
- Solver: PETSc with Hypre and multigrid (only ~2% of total computing time)
- Large simulation-size (≳10k particles per grid-vertex) per time-step: ideal for extreme scale computing
- Most of the production runs are large-scale: on >50% Titan, >50% Theta, and ~50% Cori.

Validation of XGC1, and a surprising result for ITER

- XGC1 predictions agreed well with the existing experimental results from the three large US tokamaks + a JET high-current (4.5MA) case
- Divertor heat-flux width was dominated by the ion neoclassical dynamics
 - X-point orbit-loss type of ion-drift dynamics is the dominant mechanism
 - Turbulent e-transport is a "follower," for ambipolar transport & determining E-field
- λ_q physics agreed with the previous picture presented by
 - XGC0: Report on 2010 US-DOE Joint Research Target study
 [A. Pankin et al., Phys. Plasmas 22, 092511 (2015)]
 - Heuristic ion-drift model: R. Goldston, NF 52, 013009 (2012)
- XGC1 finds ubiquitous blobby turbulence

However, the same XGC1 on 15MA ITER produced $\lambda_q^{Eich} \gtrsim 6\lambda_q^{Eich}$. Why???

- → Triggered a deeper study
 - Size effect: parallel and neutral physics
 - Δ_{banana} /a effect: perpendicular physics

Similarly to other existing tokamak cases, $\lambda_{q,i}^{XGC} > \lambda_{q,e}^{XGC}$ in the JET 4.5MA discharge (and the edge turbulence is blobby)

Sensitivity of λ_q to initial plasma profiles on JET

The left-figure at the bottom has ~2X narrower pedestal width, but yields a similar λ_q at the end, due to the turbulence & background self-organization capability of the total-f XGC1.

Conclusion from this and the ITER studies: For Total-f XGC, approximately correct intial plasma profile around the separatrix is good enough.

XGC study on a 15MA ITER model plasma

- The MHD-limited pedestal was too steep: too strong turbulence → too high a heat flow across the separatrix and to divertor target ~700MW.
 - But λ_q^{MHD} was still ~6mm
- XGC1 eventually found a selforganized plasma profile across the separatrix; which satisfies, approximately, turbulence saturation across sepratrix, power balance between separatrix and divertor at ~100MW, and λ_q saturation.

Caution: approximate turbulence and power balance achieved only at ψ_N >0.96.

Input comparison between the "MHD/fluid-limited ITER-standard" pedestal and an electrostatic-XGC1 relaxed pedestal at 15MA

- The XGC1-obtained (approximate) pedestal width at ITER 15MA is ≥ 2x MHD/Fluid pedestal width
 - EM effect needs to be studied later
- $\lambda_q \sim 6mm$ in both MHD and kinetic pedestals

Caution: XGC1 density and temperatures are meaningful only at ψ_N >0.96.

XGC finds λ_{q,e}≳λ_{q,i}: 15MA ITER is different from the present tokamaks.
 Heat flux is completely dominated by the electrons in both magnitude and width.

XGC study on a 5MA ITER model plasma

 To check if the enhanced λ_q in the full-current ITER is from the "size effect" or from the "Δ_{banana}/a effect," a 5MA initial H-mode operation in ITER has been simulated

 \rightarrow λ_q agrees with the present tokamaks \rightarrow clearly not the size effect → Difference in turbulence is from the Δ_{banana}/a effect.

- The "absolute size effect" is related to the parallel physics and the neutral particle transport.
- The "Δ_{banana}/a effect" is mostly from the perpendicular physics.
- Exclusion of the pure ∆_{banana} effect will be validated (or invalidated) against the recent highest current C-Mod plasma.

Evidence for an edge physics bifurcation between the higer and lower Δ_{banana}/a values.

In the low-current ITER, edge tubulence across the separatrix is blob type and the ExB shearing rate is high. In the high-current ITER, the turbulence is streamer type and the ExB shearing rate is low.

In 15MA ITER edge at Ψ_N~1, the plasma pedestal is supported by toroidal flow ~0.1 V_i, generated by X-loss

Unlike for the blobby turbulence in present tokamaks, the full-current ITER contains a strong non-adiabatic electron response across the magnetic separatrix,

as evidenced by a large phase difference between δn and $\delta \Phi$ ($\geq \pi/2$) (left) and a strong de-correlation between their amplitudes (right).

There appears to be a "bifurcation" from Blob- to Streamer-type edge turbulence somewhere between JET and ITER, arising from nonlinear interaction between weaker V_{ExB} and TEM turbulence.

- Weaker X-loss driven ExB-shearing-rate from the size effect $\gamma_{E_{XB}}^{X-loss} \propto (v_i/a) \rho_i/a$
- Failure to stablize TEM turbulence: $\gamma_{ExB}^{X-loss}/\gamma_{mode} \propto \Delta_{banana}/a$
- TEM turbulence induces large particle flux
- Weakens the ExB shearing rate further.
- Turbulence becomes stronger
- \rightarrow Nonlinear bifurcation.

When the ion neoclassical X-loss becomes too weak, the edge plasma self-organizes to expell the heat through microturbulence.

Definition of λ_q should include dissipation by the X-point ExB circulation

- The upstream-downstream plasma relation is not explained by fluid equations along the field lines, even in sheath-limited regime
 - Experimental: J. Canik et al, PoP 2017
 - Gyrokinetic: Churchill [TH/P7-26]; non-Maxwellian+drift correction is severe, CGL is invalid
- New: ExB circulation around the X-point, breaking the flux-tube relationship
 - Chang, Ku, Churchill, submitted to PoP, gyrokinetic XGC, X-loss
 - Schaffer et al., PoP 2001, experimental fast probe

TEM effect on wider λ_q is supported in NSTX-U plasmas

- A high triangularity (δ_X≈0.8) NSTX 1MA discharge has been selected as a reference for NSTX-U plasma models:
- 1.5MA and 2MA NSTX-U plasma profiles are projected from ∇
- Unlike other tokamaks, NSTX-U with δ_X≈0.8 shows enhanced λ_q, and a reduction by divertor-chamber cooling → A good testbed for a λ_q physics study

NSTX #139047 as a reference case for an NSTX-U projection

In the high current (2MA) NSTX-U case without the divertorchamber cooling, where $\lambda_q \sim 2.5 \lambda_q^{Eich}$, the edge turbulence is not the usual blobs and ϕ_{00} is almost flat across the separatrix

At lower I_P (=1MA) NSTX, the edge turbulence becomes blobby and φ_{00} is more sheared across the separatrix surface \leftarrow higher Δ_{banana}/a

In the NSTX 1MA reference case with the same plasma shape as for NSTX-U, turbulence is blobby.

Turbulence property across separatrix is sensitive to the local ExB shearing rate

Conclusion and discussion

- The XGC-predicted heat-flux widths have been well-validated on the three major US tokamaks: NSTX, DIII-D, C-Mod
- Prediction for 15MA ITER: λ_q^{XGC} (15MA ITER) $\gtrsim 6\lambda_q^{Eich(14)}$ (15MA ITER)
- Since XGC is a total-f code, λ_q^{XGC} is not very sensitive to the initial plasma profile, as long as it is reasonable.
- Physics reason for broader $\lambda_q^{\ XGC}$ in 15MA ITER than 5MA is revealed
 - As I_P increases, $\Delta_{i,banana}/a$ becomes smaller and weakens the Xloss driven E_r shearing rate across separatrix, and the trapped electron turbulence surfaces up to broaden λ_q^{XGC}
- NSTX-U seems to confirm this physics reason
- The flux tube argument between the upstream-downstream SOL width needs reconsideration
- Need other validation ideas: How can we reduce the E_r shearingrate across the separatrix surface in the present tokamaks?

Extra slides

Outline

- The XGC-predicted heat-flux widths have been well-validated on the three major US tokamaks: NSTX, DIII-D, C-Mod
- Prediction for 15MA ITER: $\lambda_q^{XGC} \gtrsim 6\lambda_q^{Eich(14)}$
- Prediction for high-current JET: λ_q^{XGC} follows $\lambda_q^{Eich(14)}$
- Since XGC is a total-f code, λ_q^{XGC} is not very sensitivity to the initial plasma profile, as long as it is reasonable.
- Prediction for 5MA ITER: λ_q^{XGC} follows $\lambda_q^{Eich(14)}$
- Physics reason for $\lambda_q^{XGC} \gtrsim 6\lambda_q^{Eich(14)}$ in 15MA ITER is revealed
- NSTX-U appears to confirm the physics reason
- Flux tube argument between upstream-downstream needs reconsideration
 - Definition of λ_q should include dissipation by the X-point ExB circulation
- Conclusion and discussion

Prediction on full-current JET: λ_q^{XGC} from the 4.5MA discharge follows $\lambda_q^{Eich (14)}$, as other existing tokamaks do [JET will measure $\lambda_q(exp)$]

Could not conclude if the effect is from the size or a/ρ_{ip} effect, since both of them are smaller in the 4.5MA JET than in the full-current ITER

XGC1 can study divertor heat-flux at unprecedented detail.

Time-scale issue: In the core plasma, f evolves slowly

For this argument, let's use the drift kinetic equation for simplicity $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f + (e/m)E_{||} v_{||} \partial f/\partial w = C(f, f) + Sources/Sinks.$

In near-thermal equilibrium, take the "transport ordering" (= diffusive ordering): $\partial f/\partial t = O(\delta^2)$, S=O(δ^2), with $\delta <<1$

• Let $f=f_0+\delta f$, with $\delta f/f_o=O(\delta)$, $\delta <<1$, $v_d/v_{||} = O(\delta)$, $E_{||}/m = O(\delta \text{ or } \delta^2)$

 $O(\delta^0): \quad v_{||} \cdot \nabla f_0 = C(f_0, f_0) \rightarrow f_0 = f_M:$ H-theorem

- $O(\delta^{1}): \quad \partial \delta f / \partial t + v_{\parallel} \cdot \nabla \delta f + v_{d} \cdot \nabla f_{0} + (e/m) E_{\parallel} v_{\parallel} \partial f_{o} / \partial w = C(\delta f)$
 - ♦ Perturbative kinetic theories then yield transport coefficients = $O(\delta^2)$
 - ♦ In this case, fluid transport equations ($f_o \rightarrow n, T$) can be used with analytic or delta-f kinetic closures
- → δf -GK simulation is cheaper per physics time (small computers), but equilibrates on a slow time scale $O(\delta^1 \omega_{bi})^{-1} \sim ms$: Core GK simulation time scale

A meaningful time evolution of f_0 can only be obtained in a long "transport-time" scale $O(\delta^2 \omega_{bi})^{-1}$: Not yet reachable by GK simulation; Multiscale time integration is needed.

In edge, f equilibrates in zeroth-order time-scale

- Ion radial orbit excursion width (~10ρ_i) ~ pedestal & scrape-off layer width; unconfined orbits with neutral recycling → Non-Maxwellian
 All terms can be large: ~ either O(ω_{bi}) or O(v_C)
 - $\mathbf{v}_{||} \cdot \nabla f \sim \mathbf{v}_d \cdot \nabla f \sim C(f, f) \sim eE_{||} v_{||} / m \partial f / \partial w \sim O(\omega_{bi}) \sim 0.05 \text{ ms in DIII-D}$
 - *f* equilibrates very fast and stiff: $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f (e/m) + E_{||}v_{||}\partial f/\partial w = C(f,f) + S$
 - Higher order corrections are unimportant
- Fast-evolving non-equilib. kinetic system
 - Fluid equations (with diffusive closure) yields an artificially long time scale.

Edge turbulence around the separatrix saturates before the central core turbulence has even started to form.

Ideal for extreme scale computing: big physics in small number of time steps.

Fully Implicit EM XGC1 will answer the EM effect on λ_q

- We first implemented Chen-Parker's split weight scheme
 - The "cancellation problem" was an issue when XGC stresses the long-wave length physics, too.
- We then implemented two other EM algorithms that do not suffer from the cancellation problem
 - Hybrid EM algorithm for fluid-electron type turbulence (fluid electrons + GK ions)
 - In production
 - Fully implicit EM algorithm by L. Chacon
 - At the moment, the electron time-stepping algorithm is ~5X more expensive than the present ES time-stepping
 - Wating for Summit

Top: Dispersion relation for low-wavenumber Alfven modes, demonstrating the absence of cancellation issues. Right: Snapshots of electrostatic potential and electron density.