

Kinetic Resistive Wall Mode Stabilization Physics in Tokamaks

Jack Berkery Columbia University

S.A. Sabbagh¹, R. Betti², H. Reimerdes³, J. Hanson¹,

A. Balbaky¹, R.E. Bell⁴, A. Diallo⁴, S.P. Gerhardt⁴, B.P. Le Blanc⁴, J.E. Menard⁴, M. Podesta⁴, Z.R. Wang⁴ ¹Columbia University, ²University of Rochester, ³Ecole Polytechnique Fédérale de Lausanne, ⁴PPPL

> 18th International Congress on Plasma Physics Kaohsiung, Taiwan, June 27 – July 1, 2016

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

*This work supported by the US DOE contracts DE-AC02-09CH11466 and DE-FG02-99ER54524

- RWM Definition and Motivation
- Kinetic Stability Theory
 - Rotation
 - Collisionality
 - Energetic Particles
- Comparison of Calculations and Experimental Results
- Stability Estimation and Rotation Profile Control
- Summary

An unstable RWM is an exponential growth of magnetic field line kinking that can cause disruptions

• The resistive wall mode (RWM) is a kinking of magnetic field lines slowed by penetration through vessel structures

NSTX-U

An unstable RWM is an exponential growth of magnetic field line kinking that can cause disruptions

RWMs can cause a collapse in β , disruption, and termination of the plasma

NSTX-U

An unstable RWM is an exponential growth of magnetic field line kinking that can cause disruptions

RWMs can cause a collapse in β , disruption, and termination of the plasma

NSTX-U

A scalar critical plasma rotation model can not explain RWM stability; it depends on the ω_{φ} profile

- RWM Definition and Motivation
- Kinetic Stability Theory
 - Rotation
 - Collisionality
 - Energetic Particles
- Comparison of Calculations and Experimental Results
- Stability Estimation and Rotation Profile Control
- Summary

"Kinetic effects" means taking into account complicated particle motion rather than treating the plasma as a fluid

Kinetic theory consistent with RWM destabilization at intermediate plasma rotation

June 27 – July 1, 2016

Collisionality affects the strength of kinetic resonances

ICPP 2016 – Kinetic RWM stability – J.W. Berkery

NSTX-U

- Early theory predicted RWM stability should decrease at low v
- Kinetic RWM stability theory:
 - Stabilizing resonant kinetic effects enhanced at low v
- Important for ITER

[J. Berkery et al., Phys. Rev. Lett. 106, 075004 (2011)]

June 27 – July 1, 2016 10

Energetic particles provide a stabilizing force that is nearly independent of rotation and collisionality

ICPP 2016 – Kinetic RWM stability – J.W. Berkery

- RWM Definition and Motivation
- Kinetic Stability Theory
 - Rotation
 - Collisionality
 - Energetic Particles

Comparison of Calculations and Experimental Results

- Stability Estimation and Rotation Profile Control
- Summary

MISK calculations validated against unstable experimental plasmas; reproduce approach towards marginal stability

 MISK calculations including kinetic effects have been tested against many marginally stable NSTX experimental cases

Kinetic RWM stability physics unites results from DIII-D and NSTX plasmas

- Addition of kinetic effects yields agreement with marginal point in NSTX
- Further testing against
 DIII-D experiments shows good agreement
- Strong bursting MHD modes can lead to nonlinear destabilization before linear stability limits are reached

NSTX-U

[S. Sabbagh, J. Berkery, J. Hanson, et al., APS invited 2014]

Kinetic RWM stability analysis for experiments (MISK)

Active MHD spectroscopy experiments show the importance of kinetic effects in stable plasmas as well

[H. Reimerdes et al., Phys. Rev. Lett. 106, 215002 (2011)]

- Resonant field amplification indicates weakening stability
 - Plasma response is enhanced where kinetic effects and RWM stability are weak

- Discharge trajectories for 20 NSTX plasmas shows favorable ω range
 - Matches theoretical expectation for precession drift resonance

NSTX-U

MISK calculations match experiments

- RWM Definition and Motivation
- Kinetic Stability Theory
 - Rotation
 - Collisionality
 - Energetic Particles
- Comparison of Calculations and Experimental Results

Stability Estimation and Rotation Profile Control

Summary

Physics understanding from previous research used to construct a reduced kinetic model

- Goal is to forecast γ in real-time using parameterized reduced models for δW terms
- Need δW_{κ} as a function of the most important, real-time measurable quantities

NSTX-U

ICPP 2016 – Kinetic RWM stability – J.W. Berkery

Summary

- RWM stability must be understood for future devices
- Kinetic theory modifies ideal stability, includes rotation, collisionality, and energetic particle effects
- ITER stability projections show all kinetic effects important
- MISK code calculations can explain experimental stability
- Reduced models needed for real-time disruption avoidance

