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Motivation: Locally resolve the electron density & temperature to probe various 
fast physical phenomena via Thomson scattering

• Low temperature (< 10 eV) plasma benefits from Langmuir probe access 
with its potential perturbation to the local plasma. 

• High temperature plasma routinely probe the plasma via laser scattering 
for local measurements. 
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Stability code suite(EPED) predicts pedestal pressure height and width 

– based on two key limiting instabilities 

–  non-local peeling–ballooning (P–B)mode ➙ trigger for edge-localized mode (ELM)  

– nearly local kinetic ballooning modes (KBMs) ➙ regulate transport between ELMs

H-mode pedestal dynamics and onset of edge localized modes 
are still ongoing research

Type I ELM cycle cartoon
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Both ELM onset and pedestal recovery  
are on microseconds and milliseconds time scale.

ELM physics is thought to be localized to  
the pedestal.

Connor, PoP (1998); Wilson, PoP (2002); 
Snyder,  PoP (2001); Snyder, NF (2011)
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• Very strong neoclassical inward pinch drives rapid cross-field 
transport of impurities into the core. 

• Rapid ELM events produce convective outward expulsion of 
impurities.

Impurity transport physics in H-mode

Need to diagnose these fast processes by acquiring both high-speed impurity 
measurements and fast ne, Te measurements 

All impurity measurements rely on electron profiles (ne, Te)
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• Thomson scattering has since been a robust and accurate 
approach for density & temperature local measurements. 

• Limitations: 
– Temporal resolution has been limited to tens of Hz @ Joule level energies. 

– Increase of this repetition rate is usually achieved by interleaving multiple lasers. 

– Difficult to scale in order to achieve kHz rep rate. 

• Both in low and high temperature plasmas, fast transient physics  
require kHz rep rate lasers.

Thomson scattering is central to many analyses in fusion 
devices
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• Two approaches to achieve fast temporal resolution. 

- Thin disk 
Immune to thermal lensing and capable of 1 kHz @ Joule levels - ongoing work  

- Flashlamp (this talk)  
Limited to fast burst but capable to achieve tens of kHz at joule level energies 

• Characterization of the fast pulse burst laser system. 

• Benefits of synergy between TS and modern x-ray-based Te 
measurement.

Outline
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• PBLS has been pioneered at Madison Symmetric Torus (MST). 

• On NSTX-U, we plan to         extend the pulse duration and, (B)  add a baseline mode to 
increase the regular (60 Hz) TS temporal resolution. 

- PBLS will be an upgrade to the existing TS system. 

• PBLS will offer new time resolved measurements capabilities to tackle a wide range of physics. 
– ELM onset physics ( ≲ 1ms ). 
– MHD, e.g., kink and tearing modes (~ sub ms). 
– Disruption physics (~ sub ms) 
– L-H transition (≲ 1 ms). 
– Probe the electron distribution induced by RF.  
– Fast ion physics, e.g., density and temperature displacements induced by TAE modes. 
– Edge turbulence (few kHz).

7

Fast Thomson scattering measurements can be achieved using a 
pulse burst laser system (PBLS)

D J Den Hartog, J R Ambuel, M T Borchardt, J A Reusch, P E Robl, and Y M Yang 
Journal of Physics: Conference Series 227 (2010) 012023

A B
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• Pulse energy ➾ 1.5 J per pulse. 
- Pulse width ➾ 10 ns (FWHM) 

- Beam diameter ➾ 10 mm @ 0.5 mrad 

• Three modes of operation. 
- Base mode @ 30 Hz to be compatible with the current NSTX-U rep rate 

- Slow burst mode: 1 kHz rep rate for 50 ms. 

- Fast burst mode: 10 kHz rep rate for 5 ms. 

• Take advantage of Nd:YAG larger rod diameter (9 & 12 mm) for 
thermal inertia.

Pulse burst laser - Design specifications

Limited by thermal lensing}
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Quantel laser head provides large diameter rods to increase 
the thermal inertia
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Three of  modes of operation have been implemented

30 Hz

1 kHz for 50 ms

10 kHz for 5 ms

Flashlamp

Q-switch
Baseline

Slow burst

Fast burst

Slow and fast can also be triggered on demand
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• Single and double hump pulses. 

• Minimal impact of the NSTX-U TS 
analysis.

Two types of pulse shape have been observed at the  
exit of the oscillator

50 100 150 200 250
-0.5

0

0.5

1

1.5

2
Diode sig. @ Pump. Chamber [V]

50 100 150 200 250
-0.5

0

0.5

1

1.5

2

2.5

3

3.5 Diode sig. @ osc. exit [V]

Time [ns] Time [ns]
50 100 150 200 250

-0.5

0

0.5

1

1.5

2

2.5 Diode sig. @ Pump. Chamber [V]

50 100 150 200 250
-1

0

1

2

3

4 Diode sig. @ osc. exit [V]

Time [ns] Time [ns]

Laser head can in principle produce  
a stable single-hump pulse  

by optimizing the oscillator output coupler reflectivity 
(subject of future upgrade)



ICPP - Taiwan A. Diallo -  July 2016 12

Energy levels needed for the base and slow burst modes were achieved
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Similar reproducibility are obtained for two fast bursts scenarios: 
10 kHz & 20 kHz
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Base mode exhibits good beam profile far field stability 
(Imaging a reticle at 8.5 m)
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Major  & minor axis 
Tilt of major axis 
Pointing stability

Key  beam profile parameters
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Summary of beam parameters in far field field for base mode: 
Major (vertical) axis and orientation, minor (horizontal) axis, pointing properties

Beam Parameters @ 8.5 m  − 30 Hz
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Slow burst mode exhibits an elongated beam profile in the far 
field (still under investigation)
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Summary of beam parameters in far field field for slow burst 
Major (vertical) axis and orientation, minor (horizontal) axis, pointing properties
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Fast burst mode has acceptable far-field beam properties
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Summary of beam parameters in far field field for fast burst  
Major (vertical) axis and orientation, minor (horizontal) axis, pointing properties

Beam Parameters @ 8.5 m  − 10 kHz
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• Two approaches to achieve fast temporal resolution 

- Thin disk 
Immune to thermal lensing and capable of 1 kHz @ Joule levels - ongoing work  

- Flashlamp  
Limited to fast burst but capable to achieve tens of kHz at joule level energies 

• Characterization of the fast pulse burst laser system 

• Benefits of synergy between TS and modern x-ray-based Te 
measurement.

Outline

This talk
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• Medium- and high-Z 
impurities can be found in 
tokamaks and stellarators. 

• Continuum radiation is 
sampled using modern 
detectors. 

• Te, nZ/ne and 𝛿Zeff can be 
inferred from the continuum.

From sampling the continuum from Ar and Mo,  
Te and ne

2Zeff can be determined 
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• However, these measurements are constrained by photon statistics up to 10 kHz.

Fast Te measurements using the continuum in combination 
with Thomson scattering has been demonstrated in NSTX
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From the fast TS, in combination with SXR measurements, the impurity densities can be measured with high temporal 

On C-mod Continuum and line-emission can constrain Te and nZ/ne
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• Good progress in the R&D of the fast laser system for NSTX-U. 

- Capable of operating at up to 20 kHz in burst mode 

• Such laser system will open new research opportunities in fast phenomena present in fusion devices. 

- ELM physics, impurity transport, L-H physics, and fast ion physics etc.. 

- Note this system can be extended to diagnose physics phenomena in low temperature plasma 
such as spokes. 

• PBLS will offer new time resolved measurements capabilities to tackle a wide range of physics. 
– ELM onset physics ( ≲ 1ms ). 
– MHD, e.g., kink and tearing modes (~ sub ms). 
– Disruption physics (~ sub ms). 
– L-H transition (≲ 1 ms). 
– Probe the electron distribution induced by RF.  
– Fast ion physics, e.g., density and temperature displacements induced by TAE modes. 
– Edge turbulence (few kHz).

Summary and outlook

The burst capability can be applied to low temperature plasma! 
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• Uniaxial heat flux: Low thermal lensing  

• High brightness 

• Low brightness constraints for pump diodes 

• High gain saturation: Insensitive to back reflections 

• Scalability by increase of beam cross section 

• Negligible nonlinearities at high peak powers

Competing approach: Disk laser principle

disk Front Side:
Pumping

Back Side:
Cooling

r
T

Brilliant

Output
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Current technologies support thin disk based laser system for a 
continuous 10 kHz @ 2J 

Courtesy TRUMPF




