

Key physics issues and opportunities for next-step spherical torus devices

Jonathan Menard (PPPL)

18th International Congress on Plasma Physics Kaohsiung Exhibition Center, Kaohsiung, Taiwan June 27 – July 1, 2016

Outline

- Motivations for studying "spherical" tokamak (ST)
- Mission elements of NSTX-U Research Program
- NSTX-U research commissioning status
- Key physics issues for ST
 - Energy transport
 - High-beta stability
 - Power exhaust
 - Current sustainment and start-up

ST research extends predictive capability for ITER and toroidal confinement science

- High β physics, rotation, shaping extend stability, transport knowledge
- NBI fast-ions in present STs mimic DT fusion product parameters in ITER → study burning plasma science
- STs can more easily study electron scale turbulence at low collisionality → important for all magnetic fusion

Burning Plasma Physics - ITER

Recent design studies show ST potentially attractive as Fusion Nuclear Science Facility (FNSF) and Pilot Plant

FNSF: Provide neutron fluence for material/component R&D (+ T self-sufficiency?) **Pilot Plant**: Electrical self-sufficiency: $Q_{eng} = P_{elec} / P_{consumed} \ge 1$ (+ FNSF mission?)

FNSF with copper TF coils A=1.7, $R_0 = 1.7m$, $\kappa_x = 2.7$, $B_T=3T$ Fluence = 6MWy/m², TBR ~ 1

FNSF / Pilot Plant with HTS TF coils

A=2, R₀ = 3m, κ_x = 2.5, B_T = 4T 6MWy/m², TBR ~ 1, Q_{eng} ~ 1

Designs integrate ST higher κ , β_N and advanced divertors (+ HTS TF for Pilot Plant)

Beyond high- B_T capability, HTS cables using REBCO tapes achieving very high winding pack current density

Conductor on Round Core Cables (CORC) J_{WP} ~ 70MA/m² 19T

7 kA CORC (4.2K, 19 T) cable

Base cable: 50 tapes YBCO Tapes with 38 µm substrate (Van Der Laan, HTS4Fusion, 2015)

High current density HTS \rightarrow more compact TF magnets \rightarrow lower-A tokamak pilot plants

- Pilot: R=3m, P_{NBI} = 50MW, f_{GW}=0.8, f_{NICD} = 1, $\beta_N = \beta_{N-no-wall}(\epsilon)$, $\kappa = \kappa(\epsilon)$, H unconstrained, $\eta_{th} = 0.45$
- ITER-like TF constraints: $-J_{WP}=20MA/m^2$, $B_{max} \le 12T$ $-P_{fusion} \le 130MW$ $-P_{net} < -90MW$
- J_{WP} ~ 30MA/m², B_{max} ≤ 19T
 − P_{fusion} ~ 400MW
 − Small P_{net} at A=2.2-3.5
- J_{WP} ≥ 70MA/m², B_{max} ≤ 19T
 −P_{fusion} ~500-600MW
 −P_{net} = 80-100MW at A=1.9-2.3

A ~ 2 attractive at high J_{WP} -

Outline

Motivations for studying "spherical" tokamak (ST)

- Mission elements of NSTX-U Research Program
- NSTX-U research commissioning status
- Key physics issues for ST
 - Energy transport
 - High-beta stability
 - Power exhaust
 - Current sustainment and start-up

NSTX-U Mission Elements:

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI)

• Advance ST as Fusion Nuclear Science Facility and Pilot Plant

NSTX-U

Liquid metals / Lithium

ST-FNSF / Pilot-Plant

ITER

NSTX-U will access new physics with 2 major new tools:

2. Tangential 2nd Neutral Beam

<u>Higher T, low v^* from low to high β </u> \rightarrow Unique regime, study new transport and stability physics Full non-inductive current drive
 → Not demonstrated in ST at high-β_T Essential for any future steady-state ST

NSTX-U will have major boost in performance

>2× toroidal field (0.5 → 1T)
>2× plasma current (1 → 2MA)
>5× longer pulse (1 → 5s)

>2× heating power (5 → 10MW)
Tangential NBI → 2× current drive efficiency
>4× divertor heat flux (→ ITER levels)
>Up to 10× higher nTτ_E (~MJ plasmas)

NSTX-U: Operational Research Facility

All six NBI sources now operational, supporting high performance experiments

NSTX-U research initiated January 2016

H-mode access achieved during first 2 weeks of operation

NSTX-U plasma commissioning status

- ~9 run weeks of ops, $I_P = 0.5-1MA$, boronized PFCs
- Nearly all shots at $B_T = 0.6-0.65T > NSTX max = 0.55T$
- All 6 NBI injected into plasmas, 5-10MW routinely available

Examples of high-performance L and H-modes achieved thus far in NSTX-U

NEXT: Increase κ to avoid tearing, active RWM control, trigger ELMs (ΔR_{sep} , granule injector)

Outline

- Motivations for studying "spherical" tokamak (ST)
- Mission elements of NSTX-U Research Program
- NSTX-U research commissioning status
- Key physics issues for ST
 - Energy transport
 - High-beta stability
 - Power exhaust
 - Current sustainment and start-up

Favorable confinement trend with collisionality and β found in ST experiments

ST scaling observed in NSTX and MAST: $\tau_{E, th} \propto v_{*e}^{-0.8} \beta^{-0.0}$ Tokamak empirical scaling (ITER 98y,2): $\tau_{E, th} \propto v_{*e}^{-0.1} \beta^{-0.9}$

Promising scaling to ST-FNSF / Pilot, will trend continue on NSTX-U / MAST-U?

NSTX: Global non-linear GTS gyrokinetic simulations have identified multiple low-k turbulence transport mechanisms

Strong flow shear can destabilize Kelvin-Helmholtz instability

- Non-linear global GTS simulations
- K-H + ITG + Neo ion transport within factor of 2 of expt'l level
- Cannot account for electron transport

Recent GTS simulations have shown possible role of DTEM in contributing to observed favorable collisionality scaling ($BT_{th} \sim V_{*e}^{-0.8}$)

- In addition to microtearing
- Synergy with DIII-D work

W. Wang et al., NF Letters, PoP (2015)

NSTX: Large inferred anomalous core electron transport in presence of CAE/GAEs

- Observation of high frequency Compressional/Global Alfven Eigenmodes (CAE/GAE) modes in plasma core associated with flattening of T_e profile (Stutman, Tritz - JHU)
 - High level of transport (10-100 m²/s) inferred assuming classical beam physics

NSTX-U

J. Menard - ICPP 2016

New NSTX-U result: suppression of counterpropagating GAE observed for large R_{TAN} 2nd NBI

- Top panel: GAE excited by inboard sources 1B / 1C
- Injection of new outboard source 2B starts at 0.192s
 → suppression of GAE
 - Suppression also with 2A, 2C
- Observations consistent with model of cyclotronresonant drive of GAE
- Will investigate whether GAE absence impacts electron thermal transport

 \rightarrow 2nd NBI already powerful new tool for Fast Ion and AE physics

New 2nd NBI: L-mode core sawtooth and tearing dynamics change with source tangency radius

Outline

- Motivations for studying "spherical" tokamak (ST)
- Mission elements of NSTX-U Research Program
- NSTX-U research commissioning status
- Key physics issues for ST
 - Energy transport
 - High-beta stability
 - Power exhaust
 - Current sustainment and start-up

Dedicated tokamak + ST experiments found power exhaust width varies as 1 / B_{poloidal}

Will 1/B_{poloidal} variation continue at higher I_P? What about detached conditions?

MAST-U and NSTX-U will test radiation and advanced divertors for mitigating high heat-fluxes

- Assess impact of flux expansion, line length on detachment
- Snowflake (SFD), Super-X (SXD) **Divertor** geometry -1 -1.2 SXD1 Z [m] SXD2 -1.4-1.6-1.8-2 0.5 1.5 R [m]

• MAST-U: Conventional (CD),

• NSTX-U: Snowflake (SFD) / X-D

Outline

- Motivations for studying "spherical" tokamak (ST)
- Mission elements of NSTX-U Research Program
- NSTX-U research commissioning status
- Key physics issues for ST
 - Energy transport
 - High-beta stability
 - Power exhaust
 - Current sustainment and start-up

Steady-state operation required for ST/AT FNSF or Pilot Plant

Will NSTX-U achieve 100% as predicted by simulations?

ST-FNSF may need solenoidless current start-up method Coaxial Helicity Injection (CHI) effective for current initiation

2

(m) 2

CHI developed on HIT, HIT-II Transferred to NSTX / NSTX-U

NSTX: 150-200kA closed flux current

NSTX-U: CHI projects to 300-400kA FNSF: CHI blanket electrodes: 2MA

What about 3D effects?

R (m)

2 0

2 0

R (m)

-2

0

2

R (m)

NIMROD simulations: plasmoid-mediated reconnection assists flux closure at high Lundquist number

NSTX-U

J. Menard - ICPP 2016

Summary: ST research making leading contributions to fusion energy development

- Support burning plasma research by expanding understanding of energetic particle, thermal transport
- Will explore performance and implications of advanced divertor configurations, liquid metals
- ST promising as Fusion Nuclear Science Facility – High J_{WP} of HTS \rightarrow enables compact lower-A Pilot Plant
- NSTX-U operational now!
- MAST-U first plasma next year!

See more ST-related talks this week

A2A1-1	2016/6/28 8:30	Mikhail Gryaznevich	МСР	Invited	Merging-compression formation of high temperature tokamak plasma
A2A1-2	2016/6/28 8:55	Hiroshi Tanabe	МСР	Oral	Application of high power reconnection heating for solenoid-less startup of spherical tokamak in MAST
A2A1-3	2016/6/28 9:10	Michiaki Inomoto	BPP	Invited	Particle acceleration in magnetic reconnection laboratory experiment with presence of strong guide field
A2A1-4	2016/6/28 9:35	Yasushi Ono	BPP	Oral	Development of High Magnetic Field Merging
					Tokamak Experiment TS-U for Reconnection Heating Physics and Applications
A2A1-5	2016/6/28 9:50	Yuichi Takase	MCP	Oral	Study of Plasma Current Ramp-Up by the Lower Hybrid Wave in the TST-2 Spherical Tokamak
A5A2-3	2016/7/1 11:15	Ahmed Diallo	LTDP	Invited	Development of medium and fast burst laser systems for laboratory and fusion plasmas
A2A2-4	2016/6/28 11:40	John Berkery	МСР	Invited	Kinetic resistive wall mode stabilization physics in tokamaks
A2P1-5	2016/6/28 15:20	Franco Alladio	МСР	Oral	The plasma centerpost obtained in the PROTO- SPHERA experiment
A3A2-3	2016/6/29 11:15	Yang Ren	МСР	Invited	Recent progress in understanding electron thermal transport in NSTX and NSTX-U
+					

Backup Slides - Physics

Optimal n=1 error field correction amplitude and phase identified to maximize pulse length, discharge performance

- Dominant error-field source: PF5 vertical field coils
- Long-pulse L-modes used to identify optimal correction amplitude, phase

On path to high I_P without tearing modes by elevating q_{min} with early heating + H-mode \rightarrow I_i=0.5-0.6, κ =2.5-2.7

- Matching NSTX κ at same I_i but at higher A
 - Real-time EFIT / ISOFLUX (GA collaboration)
 - Also utilizing improved vertical motion detection

NSTX-Theory collaborations have led the advancement in kinetic global mode stability physics

NBI-heated STs excellent testbed for α -particle physics

- α -particles couple to Alfvénic modes when $V_{\alpha} > V_{Alfvén} \sim \beta^{-0.5} C_{sound}$
- $V_{fast} > V_A$ condition easily satisfied in high- β ST with NBI heating

Can we find TAE-quiescent, high-performance regimes in NSTX-U?

"TAE avalanche" can cause energetic particle loss Uncontrolled α -particle loss could cause reactor first wall damage

- Quasi-linear "Critical Gradient Model" (CGM) consistent with transport before avalanche
- "Kick" model (ΔP_φ vs ΔE) predicts neutron decrement even during large avalanche events

Time [ms]

NSTX-U NIMROD projection: high fraction of open flux converted to closed flux with narrow injector flux footprint

- CHI in NSTX-U configuration naturally has a narrower injector flux footprint due to improved Injector coil positioning
- Due to higher Lundquist number in NSTX-U CHI simulations, closed flux surfaces form even during the actively injected phase

NIMROD Simulations F. Ebrahimi, et al., accepted in NF Letters

Plasma confinement increased continuously with increasing Li coatings in NSTX – what is limit?

Global parameters improve

 $-H_{98y2}$ increases ~0.9 \rightarrow 1.4 -No core Li accumulation

 High H critical for compact FNSF / Pilot Plants

• NSTX-U will double Li-wall coverage with upward evaporators

- Will further assess contributors to confinement improvement:
 - –Lower-recycling / reduced neutral source / higher $\rm T_e$
 - -Edge profile / turbulence changes
 - -Influence of (low-Z) impurities in pedestal region

NSTX-U boundary / PFC plan: add divertor cryo-pump, transition to high-Z wall, study flowing liquid metal PFCs

- 5yr goal: Integrate high τ_E and β_T with 100% non-inductive
- 10yr goal: Assess compatibility with high-Z & liquid lithium PFCs

Backup Slides – Cu TF FNSF

Identified self-consistent configuration for power exhaust, equilibrium flexibility, breeding, maintenance

Long-leg divertor reduces heat flux $3 \times to \sim 10$ MW/m² Also promotes detachment \rightarrow additional 5-10×reduction

Used free-boundary TRANSP/NUBEAM to specify NBI and simulate 100% non-inductive plasmas with $Q_{DT} \sim 2$

Neoclassical χ_{ion}

• H_{98,y2} = 1.4

- $f_{NICD} = 100\%$, $f_{BS} = 65\%$
- P_{NNBI} = 80MW (0.5MeV)
- P_{fus} = 200MW (50-50 DT)
 2.6% alpha bad orbit loss

•
$$\beta_{N} = 5.5, W_{tot} = 58MJ$$

- $W_{fast} / W_{tot} = 14\%$

• Maintain $q_{min} > 2$, $q(0) / q_{min}$ controllable via R_{tan} and density

Developed detailed CAD models for 2 different sizes (R = 1m and 1.7m – most analysis done for R=1.7m configuration)

Conformal blankets + breeding at top/bottom important for tritium breeding ratio TBR ~ 1

Quantified impact of TBM, MTM, NBI ports on TBR

Find R \geq 1.7m necessary for TBR \geq 1 at A=1.7

R=1.7m: **TBR ≥ 1**

R=1.0m: **TBR < 1 (≈ 0.9)**

- 1m device cannot achieve TBR > 1 even with design changes
- Solution: purchase ~0.4-0.55kg of T/FPY from outside sources at \$30-100k/g of T, costing \$12-55M/FPY

FNSF center-stack can build upon NSTX-U design and incorporate NSTX stability results

•Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)

- Coolant paths: gun-drilled holes or grooves in side of wedges + welded tube

•Bitter-plate divertor PF magnets in ends of TF achieve high triangularity

- -NSTX data: High δ > 0.55 and shaping S = q₉₅I_P/aB_T > 25 minimizes disruptivity
- -Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose

Bitter coil insert for divertor coils in ends of TF

J. Menard - ICPP 2016

MgO insulation appears to have good radiation resistance for divertor PF coils

R&D of a Septum Magnet Using MIC coil

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

Kuanjun Fan^{1,A)}, Hiroshi Matsumoto^{A)}, Koji Ishii^{A)}, Noriyuki Matsumoto^{B)} ^{A)} High Energy Accelerator Research Organization (KEK) 1-1 OHO, Tsukuba, Ibaraki, 305-0801, Japan ^{B)} 2NEC/Token

10

R=1.7m ST-FNS facility layout using an extended ITER building

Backup Slides – HTS TF FNSF

What is optimal A for HTS FNSF / Pilot Plant?

- $P_{fus} / V \sim \epsilon (\beta_N \kappa B_T)^4$ at fixed bootstrap fraction
- β_N and κ increase at lower aspect ratio
- B_T decreases at lower A depends strongly on:
 - Inboard shielding, HTS allowable field and current density

Approach:

- Fix plasma major radius and heating power (50MW) $R_0 = 3m smallest size for Q_{eng} > 1$ and high fluence
- Apply magnet & plasma constraints (see backup) – HTS strain: 0.3%, β_N : n=1 no-wall, κ : 0.95×limit, f_{GW} = 0.8
- Vary aspect ratio from A = 1.6 to 4
- Vary HTS current density, peak field
 Also scan inboard shielding thickness (not shown)
- Compute Q_{DT} , Q_{eng} , and required H_{98} (*unconstrained*)

Engineering constraints

- Magnet constraints
 - Maximum stress in TF magnet structure = 0.66 GPa
 - HTS tape/cable strain limit 0.3% (equivalent to 0.4 GPa)
 - Winding pack current density (CORC 2015) 70 MA/m²
 - OH at small R \rightarrow higher solenoid flux swing for higher A
- Shielding / blankets
 - HTS fluence limit: 3.5x10²² n/m²
 - Shield:10x n-shielding factor per 15-16cm WC for HTS TF
 - Include inboard & outboard breeder thickness for TBR ~ 1
 - "Effective shield thickness" includes shield + DCLL blanket
- Electrical system efficiency assumptions:
 - 30% wall plug efficiency for H&CD typical of NNBI
 - $\ge 45\%$ thermal conversion efficiency typical of DCLL
 - Also include pumping, controls, other sub-systems
 - See Pilot Plant NF 2011 paper for more details

Aspect ratio dependence of limits: $\kappa(\epsilon)$, $\beta_N(\epsilon)$

Pilot study uses $0.95 \times \kappa$ value shown here:

- NSTX data at low-A
 - Also NSTX-U/ST-FNSF modelling
- DIII-D, ARIES-AT for higher A

- $\kappa \rightarrow$ 1.9 for A $\rightarrow \infty$

- Profile-optimized no-wall stability limit at f_{BS} ≈ 50%
 - Menard PoP 2004

•
$$\beta_N \rightarrow 3.1$$
 for $A \rightarrow \infty$

Simplified TF magnet design equations

$$V_1 + V_2 = \frac{1}{2} B_0 R_0 I_{\text{coil}} \ln\left(\frac{r_2}{r_1}\right)$$
(25)

$$r_1 V_1 + r_2 V_2 = \frac{1}{2} B_0 R_0 I_{\text{coil}}(r_2 - r_1)$$
 (26)

Fig. 5. Lorentz forces are normal to the conductor in the poloidal plane.

From J. Schwartz, Journal of Fusion Energy, Vol. 11, No. 1, 1992

A=2, R₀ = 3m device TF inboard leg showing allocated space for case and winding

CORC Conductor – Achieved now

HTS performance vs. field and fast neutron fluence

R Prokopec et al

Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) before and after irradiation to a fast neutron fluence of $2.3 \cdot 10^{22}$ m⁻².

Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) as a function of neutron fluence.

Neutronics analysis for HTS TF shielding

Breeding blanket thickness model

High TF winding-pack current density required to access highest B_T at lower A

A \geq 2 pilot plant scenarios have elevated H > 1, f_{BS} ~ 80%, I_P = 6-12MA

A=2, R₀ = 3m HTS-TF FNSF / Pilot Plant

 $\begin{array}{l} \textbf{B}_{T} = \textbf{4T}, \textbf{I}_{P} = \textbf{12.5MA} \\ \kappa = 2.5, \, \delta = 0.55 \\ \textbf{\beta}_{N} = \textbf{4.2}, \, \textbf{\beta}_{T} = \textbf{9\%} \\ \textbf{H}_{98} = 1.8, \, \textbf{H}_{Petty-08} = 1.3 \\ \textbf{f}_{gw} = 0.80, \, \textbf{f}_{BS} = 0.76 \end{array}$

Startup I_P (OH) ~ 2MA $J_{WP} = 70MA/m^2$ $B_{T-max} = 17.5T$ No joints in TF Vertical maintenance

 $\begin{array}{l} {\sf P}_{\rm fusion} = 520 \ {\sf MW} \\ {\sf P}_{\rm NBI} = 50 \ {\sf MW}, \ {\sf E}_{\rm NBI} = 0.5 MeV \\ {\sf Q}_{\rm DT} = 10.4 \\ {\sf Q}_{\rm eng} = 1.35 \\ {\sf P}_{\rm net} = 73 \ {\sf MW} \end{array}$

 $\langle W_n \rangle = 1.3 \text{ MW/m}^2$ Peak n-flux = 2.4 MW/m² Peak n-fluence = 7 MWy/m²

Breeding calculations nearly complete for A=2

- Step 1- Infinite media of LiPb
- Step 2- LiPb confined to OB FW/blanket
- Step 3- Assembly gaps added
- Step 4- Homogeneous mixture of blanket in upper and lower ends of OB blanket
- Step 5- FW material added
- Step 6- Side, back, and front walls added
- Step 7- Cooling channels added

- Step 8- SiC FCI added
- Step 9- Stabilizing shells added
- Step 10- MTM only inserted (TBR relative to Step #9)
- Step 11- 4 TBMs only inserted (TBR relative to Step #9)
- Step 12- 4 NBIs only inserted (TBR relative to Step #9)
- Step 13- all MTM, 4 TBMs, and 4 NBIs inserted
- Step 14 include inboard breeding blanket

Ongoing: Thin inboard blanket (10 cm) should provide TBR > 1

Exploring liquid metal divertor design similar to flowing water curtain systems

LM injector system can be assembled in a single or double unit

LM containment structure

Shield block

Ferritic steel backing plate

HTS ST-FNSF design with Li flow on divertor and inboard surfaces

Another option: Li divertor with shorter outer leg $P_{div} = 9 \rightarrow 21 MW/m^2$ for $R_{strike} = 4.2m \rightarrow 2.5m$

67

Benefits of shorter-leg LM high-heat-flux divertor:

- Significantly reduce outboard PF coil current - Reduced PF size, force, structure
- Eliminate separate upper cryo-stat (for PF5U)

• Li wall pumping could help increase H (see Maingi talk)