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Outline

e Motivations for studying “spherical” tokamak (ST)
» Mission elements of NSTX-U Research Program
« NSTX-U research commissioning status

« Key physics issues for ST
— Energy transport
— High-beta stability
— Power exhaust
— Current sustainment and start-up
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ST research extends predictive capabllity
for ITER and toroidal confinement science

* High [3 physics, rotation, shaping
extend stability, transport knowledge

 NBI fast-ions in present STs mimic DT
fusion product parameters in ITER -
study burning plasma science

e STs can more easily study electron
scale turbulence at low collisionality =
Important for all magnetic fusion

Burning Plasma
Physics - ITER
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Recent design studies show ST potentially attractive as
Fusion Nuclear Science Facility (FNSF) and Pilot Plant

FNSF: Provide neutron fluence for material/component R&D (+ T self-sufficiency?)
Pilot Plant: Electrical self-sufficiency: Qgng = Pejec/ Peonsumed = 1 (+ FNSF mission?)

FNSF with copper TF coils FNSF / Pilot Plant with HTS TF coils
A=1.7, R,=1.7m, x, = 2.7, B;=3T A=2, Rp=3m, k,= 2.5, B; =4T

Fluence = 6MWy/m2, TBR ~ 1 6MWYy/m?2, TBR ~ 1, Qgng~ 1
e :T;-‘— m— S

Designs integrate ST higher x , B, and advanced divertors (+ HTS TF for Pilot Plant)
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Beyond high-B- capability, HTS cables using REBCO
tapes achieving very high winding pack current density

Conductor on Round
Core Cables (CORC)

10 mm

7 kA CORC (4.2K, 19 T) cable
Base cable: 50 tapes YBCO Tapes with 38 um substrate (Van Der Laan, HTS4Fusion, 2015)

7 mm

. Base Conductor
Higher Jpe HTS He Gas Cooled
cable concepts » 8KA,

under development:  Jyp~ 160MA/m?2  SS conductor

jacket for strength

Copper —_|

7 mm
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High current density HTS - more compact
TF magnets - lower-A tokamak pilot plants

Pilot: R=3m, Pyg,= 50MW, f,=0.8, fyicp = 1, By=Bu-no-wan (€), k=%(€), H unconstrained, n, = 0.45

 ITER-like TF constraints:
—Jywp=20MA/m2, B < 12T
— P on < 130MW
—P.__. <-90MW

net

- Pfusion ~ 4OOMW
—Small P, at A=2.2-3.5

e Jyp = TOMA/M2, B__ < 19T
- Pfusion ~500'600MW

Py = 80-100MW at A=1.9-2.3

A 4

A ~ 2 attractive at high J,,p —
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Outline

» Mission elements of NSTX-U Research Program

« NSTX-U research commissioning status
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NSTX-U Mission Elements:

e Explore unique ST parameter
regimes to advance predictive
capabillity - for ITER and beyond

e Develop solutions for plasma-
material interface (PMI)

ST-FNSF/

) Pilot-Plant
e Advance ST as Fusion Nuclear

Science Facility and Pilot Plant
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NSTX-U will access new physics
with 2 major new tools:

2" Neutral Beam

i } =1

1. New Central Magnet

Higher T.low v* from lowto high B Full non-inductive current drive
- Unique regime, study new —> Not demonstrated in ST at high-B+
transport and stability physics Essential for any future steady-state ST
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NSTX-U will have major boost in performance

1. New Central Magnet

vk | IRy
| & " 2ot

2. Tangential 2" Neutral Beam

e
\ l _.:.-—.};

ARSI
g

2017-2018 goals:

e »2x heating power (5 = 10MW)
»2x toroidal field (0.5 =2 1T)  Tangential NBl = 2x current drive efficiency

»2x plasma current (1 2> 2MA) >4x divertor heat flux (= ITER levels)
»>5x% longer pulse (1 = 5s) > Up to 10x higher nTtg (~MJ plasmas)
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NSTX-U: Operational Research Facility
‘ | | I I

15t NBI e

T

All six NBl sources now operational, supporting high performance experiments
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NSTX-U research initiated January 2016

NSTX-U

Plasma TV
202822
H-mode

\ f

H-mode access achieved during first 2 weeks of operation
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NSTX-U plasma commissioning status

e ~9 run weeks of ops, |, = 0.5-1MA, boronized PFCs
» Nearly all shots at B; = 0.6-0.65T > NSTX max = 0.55T
e All 6 NBI injected into plasmas, 5-10MW routinely available

Exceeded NSTX L & H-mode pulse-lengths  Approaching NSTX W+, record ~ 430kJ
using 1MW L-modes (0.65, O.SMA) NSTX record — = — —

20— T — ] 400

- NSTX record ° 8 4 -

o | I :
e 1.5] = 300-
g 2
o m g
a 1.0 . 200"
(] L

2 i
& 05 = 100
TH g -

Shot Index Shot Index
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Examples of high-performance

L and H-modes achieved thus far in NSTX-U

NEXT: Increase x to avoid tearing, active RWM control, trigger ELMs (AR

‘W Early H-mode {1 1.4f

204112 .

204082 : :

: L-mode :

Internal inductance

:

Elongation

Lirie-averaée densit-y [1020

(motivates cryo-pump) ]

m"3] T

sep?

granule injector)
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Outline

« Key physics issues for ST
— Energy transport
— High-beta stability
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Favorable confinement trend with
collisionality and B found In ST experiments

ST scaling observed in NSTX and MAST: T , &€ V., 08 00
Tokamak empirical scaling (ITER 98y,2): Tg ¢, o€ Vi 0t 09

1| ST-FNSF
constant
AN q, B, p’
ﬁ NSTX
? Upgrade
N

0.1 +

Bt (T-s)

ITER-like
scaling

Li wall coatings
Boron wall coatings

0.01 ' !
0 0.01 0.1

Normalized e" collisionality (v, ~ n/T2)

Promising scaling to ST-FNSF / Pilot, will trend continue on NSTX-U / MAST-U?
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NSTX: Global non-linear GTS gyrokinetic simulations have
identified multiple low-k turbulence transport mechanisms

Strong flow shear can destabilize Recent GTS simulations have
Kelvin-Helmholtz instability shown possible role of DTEM in
— Non-linear g|0ba| GTS simulations COntribUting to observed favorable
— K-H + ITG + Neo ion transport within collisionality scaling (B1y,~V., %)
factor of 2 of expt'l level — In addition to microtearing

— Cannot account for electron transport :
P — Synergy with DIII-D work

Electrons
[Tt LI rrrorrre ] 40—
F ] ~ NSTX140620@536 Q
: § 30 r/a=0.56 ,"
Q g = Soom
™~ L - L #
= E E 20 ~1em DTEM :l o,
- [ 2 LL .‘ ,'-"
: >\ . \\\ " ’
Lo GTS : 2 100 W
- “ E ) g
[ N . 0] c .
[ 1| ) SEE—— Lo ooy Lo L N R
% = T Qb l_2 - . ;
2 04 p 0.6 0.2 04 p 0.6 107 1 0 10

-1
10
electron coll. Preq. (in Ve 0)

W. Wang et al., NF Letters, PoP (2015)
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NSTX: Large inferred anomalous
core electron transport in presence of CAE/GAES

» Observation of high frequency Compressional/Global Alfven Eigenmodes (CAE/GAE)
modes in plasma core associated with flattening of T, profile (Stutman, Tritz - JHU)

— High level of transport (10-100 m?/s) inferred assuming classical beam physics

Stutman

f(MHz) 2mw

|||||||||

0.2 04 06 0.8
rla

00 02 04 06 08
rla

Is enhanced transport the full picture?

' CAE/GAE

BES spectra show mode
amplitudes peaking from R=115
to 120 cm (r/a~0.2 t0 0.3), In
region of enhanced transport

~dn amplitude of 738 kHZ CAE/GAE
(81 normalized to NB density)

0.490 0495  0.500
Time {s) Smith
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New NSTX-U result: suppression of counter-
propagating GAE observed for Iarge RTA,\I 2"d NBI

: , . shot 203980 hf
« Top panel: GAE excited by ey g
iInboard sources 1B/ 1C S 1o ot
» Injection of new outboard Sipp o
source 2B starts at 0.192s 5. E
. w E ]
- suppression of GAE
1.6L
— Suppression also with 2A, 2C o mS(EB) ]
« Observations consistent oo 072N
with model of cyclotron- = M
resonant drive of GAE o — : : . _—
I : E Beam Power (MW)
« Will investigate whether o o Pl 5 o
GAE absence impacts poF 20 Fan =10
electron thermal transport e I
0.14 0.16 T?r.n1e8(s) 0.20 0.22

- 2"d NBI already powerful new tool for Fast lon and AE physics
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New 2" NBI: L-mode core sawtooth and tearing
dynamics change with source tangency radius

0.8F :
< 06f -
% 0.4F E
—_— n 204713 .
0.2 204714 E

0 b Lo by g bev i
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"it{ l‘ r;\‘ﬁ
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F il ebgdcdn | ol
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Time ()
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Outline

« Key physics issues for ST

— Power exhaust
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Dedicated tokamak + ST experiments found
power exhaust width varies as 1 / B, igal

ST data breaks aspect ratio
degeneracy of data set

1 e _|e masT| |
e v
6l | ‘8 .iv
b R
8 A DII-D
' i
= 2 i T - -:::::*
R?=0.86 R
00 0.2 04 0.6 0.8

BpoI,MP L | !

Will 1/B,,,10i) Variation continue at higher 1,? What about detached conditions?
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MAST-U and NSTX-U will test radiation and
advanced divertors for mitigating high heat-fluxes

 Assess impact of flux expansion, line length on detachment

« MAST-U: Conventional (CD),
Snowflake (SFD), Super-X (SXD)

Divertor geometry

\ .":5-
—-1.2 ||

Z [m]

-1.6 |

-1.8 |

-1.4 |

»,
A

0.5 1 1.5

+ NSTX-

Z[m]

 Longer-term:

0.6

0.5
04 r
03 r

0.2

N

C PFCs= Liquid Li [
on high-Z substrates &

J. Menard
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Outline

« Key physics issues for ST

— Current sustainment and start-up
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Steady-state operation required
for ST/AT FNSF or Pilot Plant

NSTX achieved 70% “transformer-less” current drive

NSTX-U designed to achieve 100% (TRANSP):
1.2

11F
I"|98y2 :

ITER H-mode 1.0¢
confinement ;
scaling 0.9E
multiplier :

0.8}

04 05 06 0.7 08 09 1.0
Normalized Density (Greenwald fraction)
lb=1 MA, B=1.0 T, P, =12.6 MW

Will NSTX-U achieve 100% as predicted by simulations?
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ST-FNSF may need solenoidless current start-up method
Coaxial Helicity Injection (CHI) effective for current initiation

CHI developed on HIT, HIT-II NSTX: 150-200kA closed flux current
Transferred to NSTX /NSTX-U NSTX-U: CHI projects to 300-400kA
g | Rt FNSF: CHI blanket electrodes: 2MA

PF coils

TSC axisymmetric
simulation of CHI startup

( Insulating gap
I (Top & Bottom)

ol X Bror

| Lower divertor
region

Gas Injection

+ 50mF _

capacitor -2 [ k .

- bank 0O rRm 20 grm 20 Rgrm 2
R.Raman et al. PRL 2006 What about 3D effects?
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NIMROD simulations: plasmoid-mediated reconnection
assists flux closure at high Lundquist number

« Sweet Parker (S-P) reconnection in the
o _ injector region at low Lundquist number

Experiment

niz  -0ooe

Plasmoids

A At high Lundquist number the S-P
206 current sheet is plasmoid unstable

185708 o7 o8 Do 38 11 17 13 *Plasmoids seen in modelling
F. Ebrahimi, et al., PRL (2015) before found/observed in CHI data!
27
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Summary: ST research making leading
contributions to fusion energy development

e Support burning plasma research by expanding
understanding of energetic particle, thermal transport

* Will explore performance and implications of
advanced divertor configurations, liquid metals

« ST promising as Fusion Nuclear Science Facility
—High J,,, of HTS - enables compact lower-A Pilot Plant

 NSTX-U operational now!

« MAST-U first plasma next year!

I@NSTX-U J. Menard - ICPP 2016 -



See more ST-related talks this week

A2A1-1

2016/6/28 8:30

Mikhail Gryaznevich

MCP

Invited

Merging-compression formation of high
temperature tokamak plasma

A2A1-2

2016/6/28 8:55

Hiroshi Tanabe

MCP

Oral

Application of high power reconnection
heating for solenoid-less startup of spherical
tokamak in MAST

A2A1-3

2016/6/28 9:10

Michiaki Inomoto

BPP

Invited

Particle acceleration in magnetic reconnection
laboratory experiment with presence of strong
guide field

A2A1-4

2016/6/28 9:35

Yasushi Ono

BPP

Oral

Development of High Magnetic Field Merging

Tokamak Experiment TS-U for Reconnection
Heating Physics and Applications

A2A1-5

2016/6/28 9:50

Yuichi Takase

MCP

Oral

Study of Plasma Current Ramp-Up by the
Lower Hybrid Wave in the TST-2 Spherical
Tokamak

ASAZ-3

2016/7/111:15

Ahmed Diallo

Invited

Development of medium and fast burst laser
systems for laboratory and fusion plasmas

A2A2-4

2016/6/28 11:40

John Berkery

MCP

Invited

Kinetic resistive wall mode stabilization physics
in tokamaks

A2P1-5

2016/6/28 15:20

Franco Alladio

MCP

Oral

The plasma centerpost obtained in the PROTO-
SPHERA experiment

A3A2-3

2016/6/29 11:15

Yang Ren

MCP

Invited

Recent progress in understanding electron
thermal transport in NSTX and NSTX-U

'QDNSTX-U
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Backup Slides - Physics
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Optimal n=1 error field correction amplitude and phase
identified to maximize pulse length, discharge performance

 Dominant error-field source: PF5 vertical field coils
* Long-pulse L-modes used to identify optimal correction amplitude, phase

‘ 1000

800
600
400
200

kA

Plasma current (

S ot0Fceeinnnn. e e e e ieaenan -

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s)
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On path to high |, without tearing modes by elevating
J..., With early heating + H-mode - [=0.5-0.6, k=2.5-2.7

3'0 - I . :. - | ,0 S NS:I'X-UI, Borlon

© © NSTX, Lithium
NSTX, Mixed
NSTX, Boron

T+ IR B N B I I B I

o i
% R <
E 2 0 __ : ", 3
g B ':’.’ . ; %'
‘\_AE i 42l 1‘«: o
1.5 [ @ o ]
b ©, O < <
i © %%00 ¢ ooo 4 ]
1.0 . : | : L O . 1 : : . .
0.0 0.5 1.0 1.5

Ii,max(WMHD)

e Matching NSTX « at same |, but at higher A
— Real-time EFIT / ISOFLUX (GA collaboration)
— Also utilizing improved vertical motion detection
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NSTX-Theory collaborations have led the advancement in
kinetic global mode stability physics

4
‘SWW + ‘SWK (Bett| ) Berkery, 'Y'CA ; f]l.a{au-n;l?}idf.luw rotation

E 0.20 - fluid, experimental rotation

Ty = —
T " SW.:}. + SWK Sabbagh) [OA] ; 0.20 - kinetic: hollow / peaked/ broadened p,_,

Experiment

RWM High-beta stability physics theory MARS-K: Ideal wall stability (Menard)

2F
MISK: RWM High-beta stability (Berkery, Sabbaglk &

0k . >

10.0F
4 4.5 5 B 5.5 6
N
MARS-K: Resonant field amp. (Wang)
e 10° . :
S 10 O Experiments(f=—30Hz) puowall _ 475 |
~ | =©-Fluid '
g - ¢ Kinetic(Thermal) _
& | =—Fluid(No wall) Fluid
- no wall |
0.1 %, | NSTXf=-30Hz
0.0 w 107 Fluid
= with wall |
2 ~O+=—=-0 |
: : = e ad .
RWM physics with M3D-C! (Ferraro) g | === o |
< gu= ¥ * Kinetic
e Resistive wall implemented 10° - -
0.7 0.8 OI.ISil] wat 1.1
PPy
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NBI-heated STs excellent testbed for a-particle physics

* a-particles couple to Alfvénic modes when V, > Vaien~ B Coound
e V> VA condition easily satisfied in high-B ST with NBI heating

6 [

n

« NSTX-U: large fast-ion
dynamic range spanning
ST and conventional A
— Toroidal field 2x NSTX =2
Vit < V) = stabilize modes

/— Tangential 2nd NBI = very

=TT flexible fast-ion distribution

= Vary pitch angle, pressure profile

B

Viast/V Alfvén
% 2

=k
T

o

00 02 04 06 08

0.4
Bfast(o) / ﬁtﬂt(m

Can we find TAE-quiescent, high-performance regimes in NSTX-U?
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“TAE avalanche” can cause energetic particle loss

f [kHz]

250

200

150

100

- (@) NsTX 141711

bursting/chirping
A,

S
o

N n=4

I T T NN PR S p— L

TAE avalanches

_—

" (b) neutrons [10"s]

1% 14%

80 400 420 440

t [ms]

460

480

500

Neutron Deficit %

Uncontrolled a-particle loss could cause reactor first wall damage

Quasi-linear “Critical Gradient
Model” (CGM) consistent with
transport before avalanche

“Kick” model (AP, vs AE) predicts
neutron decrement even during
large avalanche events

e e Measured/TRANSP
— CGM

kick model

Time [ms]
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NSTX-U NIMROD projection: high fraction of open flux
converted to closed flux with narrow injector flux footprint

Total toroidal current
4}”[]55. T T

3xm-‘*::— /‘l, n‘:l?sed flux current:

| . /

—1x108

0.004 0006 0008 Q00 0012 0014

t (sec)
 CHI in NSTX-U configuration naturally has a narrower injector flux foot-

print due to improved Injector coil positioning

e Due to higher Lundquist number in NSTX-U CHI simulations, closed flux

surfaces form even during the actively injected phase
NIMROD Simulations

@INSTX-U

F. Ebrahimi, et al., accepted in NF Letters
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Plasma confinement increased continuously with
Increasing Li coatings in NSTX — what is limit?

* Global parameters improve
—Hgg,, Increases ~0.9 > 1.4
— No core Li accumulation

ms)
B

100

N—"

LS
&

re

S 4

A

A

> »e

+ T (ms)

« — me| * High H critical for compact
o 200 400 600 800 1000 FNSF / Pilot Plants

Pre-discharge lithium evaporation (mg)
R. Maingi, et al., PRL 107 (2011) 145004

10

Energy Confinement Time

« NSTX-U will double Li-wall coverage with upward evaporators

o Will further assess contributors to confinement improvement:
—Lower-recycling / reduced neutral source / higher T,
—Edge profile / turbulence changes
—Influence of (low-Z) impurities in pedestal region
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NSTX-U boundary / PFC plan: add divertor cryo-pump,
transition to high-Z wall, study flowing liquid metal PFCs

* 5yr goal:
e 10yr goal: Assess compatibility with high-Z & liquid lithium PFCs

&316
\\
B+C

Lill
/

-~

Downward Li
evaporator +
Li granule injector

Integrate high Tz and B with 100% non-inductive

2017-18
~

\

OBD
high-Z
row of
tiles

/
/

Up + downward Li
orator, possible

eva
pre-fi

ﬁ

e

d Li tiles (FY18)

Lower \

2018-19

L N

.

Cryo +\

full lower \
outboard

high-Z I
divertor

— 1 @

liquid Li
(including pre-filled)

2020-21

\

Cryo +
high-Z FW
and OBD
+ liquid Li

divertor I

(LLD) /

L+

[
\ Cryo-pump /

2022-23
_\\
Al \
high-Z
W+ \
divertors
+ flowing I

LLD
module /

| [
o
Flowing Li module
(Concept, location, size TBD)
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Backup Slides — Cu TF FNSF
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Identified self-consistent configuration for power
exhaust, equilibrium flexibility, breeding, maintenance

Components: | TF coil PF coil Vessel Shield Blanket
p i i | Blanket | =255 1 =082

o All equilibrium PF coils outside vacuum vessel , *D_D ]

* Increased strike-point radius reduces B, q
Strike-point PFCs also shielded by blankets

e 2"d X-point increases SOL line-length J

* PF coil set supports wide range of |,: 0.4-0.8 —<

» Elongation and squareness change with [, variation
> Fixed strike-point R, controllable B angle of incidence (0.5-57)

8]
*No central solenoid in this design _

7
eDivertor colls in TF coil ends for equilibrium, high 6 -
*Breeding at top/bottom important for maximizing TBR o

k=3.0,1,=0.40
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Long-leg divertor reduces heat flux 3xto ~10MW/m?
Also promotes detachment - additional 5-10xreduction

20

-2.5

ENCC(((TT]
"\‘LI\I‘M‘
WL

Z[m]
&

-3.5

400, . .

1.5 2.0 2.5 3.0
R [m]

Divertor perpendicular heat flux [MW/m?]

10 |
8 /\ = Peak q, < I0MW/m2 ]
6F | -
3 : E
2f i &
oL . ‘
2.5 2.6 2.7 2.8
R [m]

1000.0F ~ T E
- Dashed: Upstream ]
100.0 e o]
S i
2 10.0: .
o ;
o i
< E —_
ol 10 Solid: Target
0.1 . ,
0.0 0.2 0.4 0.6
157 ' . ]
—~ SOLPS
E 10f Soiid J. Canik
S iati ¢ OAK
E : Plasma + radiation RIDGE
g 5f |
U -
| Dashed:
ol Radiation .

0.0 0.2 0.4 0.6
nOMP (1 020 m-3)
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Used free-boundary TRANSP/NUBEAM to specify NBI
and simulate 100% non-inductive plasmas with Qg ~2

Temperature [keV] (J-BY(B,R,/R) [MA/m?]
T T T T ] 2 5 r T T T T

15¢ a0l Toéasl_% « Neoclassical y;,,

:* 1'5; e ’ * Ne / NGreenwald = 0.7

| 10; e Hogp= 1.4

| 05¢ ¢ I, =8.9MA, B; =2.9T
ool mmm e |« o = 1009, fog = 65%

00 02 04 06 08 10 00 02 04 06 08 1.0 o PNNBIZSOMW (OSMGV)

Density [10*°m™ Safety factor

30.....3.’.[..].. 65.,.,3’..,... e Py s = 200MW (50-50 DT)
25" 5— — 2.6% alpha bad orbit loss
2.0 4 e Qpr=2.5
15- 3 “ R = _

- By = 5.5, W, = 58MJ
1'05 — Wi / W = 14%
0.5-
0.0: ‘ . ‘ . ] : . . ‘ ]

00 02 04 06 08 10 00 02 M4 06 08 1.0

ppol ppol

e Maintain g, > 2, q(0) / q,,,; controllable via R.,,, and density
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Developed detailled CAD models for 2 different sizes
(R=1m and 1.7m —most analysis done for R=1.7m configuration)

Design features Vertical maintenance

- — = -

Cu/SC PF coils

shield material

TF coils housed in VW
SC PF coils R i | | G upper lid
pairs located e :
in common il = = A,

cryostat FP B S, \/V outer shell w/

Cu/SC PF coils
housed in VV
lower shell
structure

o ‘
‘} 0l _| Ports for TBM,
| I' f' B - MTM, NBI

Blankets

TF leads Angled DCLL
concentric lines to
external header
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Conformal blankets + breeding at top/bottom
Important for tritium breeding ratio TBR ~ 1

ATBR = +0.07 @WISCONSIN

Inner Blanket Segment = 0.81

Outer Blanket Segment = 0.15

Total TBR ~ 1.03 with no

penetrations or ports
(heterogenous outboard blanket)
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Quantified impact of TBM, MTM, NBI ports on TBR

No ports or penetrations, Add 4 Test Blanket @WISCONSIN
homogeneous breeding zones: Modules (TBMs)
TBR = 1.03 TBR = 1.02 (ATBR = -0.01)

TBM

Approx. ATBR per port:
e TBM: -0.25%
e MTM: -2.0%
* NBl: -0.75%

MTM

Ferritic
Steel

1 Materials Test Module (MTM) 4TBM +1 MTM + 4 NBI
TBR = 1.01 (ATBR = -0.02) TBR = 0.97
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Find R 2 1.7m necessary for TBR 2 1 at A=1.7

R=1.7m: TBR = 1 R=1.0m: TBR <1 (= 0.9)

« 1m device cannot achieve TBR > 1
even with design changes
» Solution: purchase ~0.4-0.55kg of

T/FPY from outside sources at $30-
100k/g of T, costing $12-55M/FPY

J. Menard - ICPP 2016
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FNSF center-stack can build upon NSTX-U design
and Iincorporate NSTX stability results

*Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)
— Coolant paths: gun-drilled holes or grooves in side of wedges + welded tube

*Bitter-plate divertor PF magnets in ends of TF achieve high triangularity
—NSTX data: High ¢ > 0.55 and shaping S = ggsl./aB; > 25 minimizes disruptivity
—Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose

I@DNSTX-U J. Menard - ICPP 2016 a7
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Bitter coil insert for divertor coils in ends of TF

’’’’’’
] e &) nc) o ne)

Insulator

Glidcop
plates
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MgO Insulation appears to have good
radiation resistance for divertor PF colls

Sheath Pipe Ceramic
a4 |

p

Organic

Insulation |Epoxy |Polyimide
Resistant [>107 Gy |>10° Gy

R&D of a Septum Magnet Using MIC coil

Proceedings of the 5th Anmual Meeting af Particle Accelerator Sociery af Japan A) A) A) B)
and the 33rd Linear Accelerator Meering in Japan (August 6-8, 2008, Higashihiroshima, Japan) Kuanjun Fan ', Hiroshi Matsumoto **/, Koji Ishii “*/, Noriyuki Matsumoto
A) High Energy Accelerator Research Orgamization (KEK)

1-1 OHO, Tsukuba, Ibaraki, 305-0801, Japan

B) )NEC Token
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R=1.7m ST-FNS facility layout

using an extended ITER building

Full blanke
ssembly
m f—-
VV lid / PF
cryostat
enclosure

JT-60SA
NNBI

TF centerr =
stack Sl

J. Menard - ICPP 2016
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Backup Slides — HTS TF FNSF
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What is optimal A for HTS FNSF / Pilot Plant?

o P;./V ~¢(B\x Br)* at fixed bootstrap fraction
* By and k increase at lower aspect ratio
» B; decreases at lower A — depends strongly on:
— Inboard shielding, HTS allowable field and current density
Approach:

* Fix plasma major radius and heating power (50MW)
— Ry = 3m — smallest size for Q,,, > 1 and high fluence

* Apply magnet & plasma constraints (see backup)
— HTS strain: 0.3%, By: n=1 no-wall, k: 0.95xlimit, f5, = 0.8

e Vary aspect ratio fromA=1.6to0 4

« Vary HTS current density, peak field
— Also scan inboard shielding thickness (not shown)

« Compute Qpy, Qgng: and required Hgg (unconstrained)

I@NSTX-U J. Menard - ICPP 2016
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Engineering constraints

 Magnet constraints
— Maximum stress in TF magnet structure = 0.66 GPa
— HTS tape/cable strain limit 0.3% (equivalent to 0.4 GPa)
— Winding pack current density (CORC 2015) 70 MA/m?
— OH at small R = higher solenoid flux swing for higher A

e Shielding / blankets
— HTS fluence limit: 3.5x10%2 n/m?
— Shield:10x n-shielding factor per 15-16cm WC for HTS TF
— Include inboard & outboard breeder thickness for TBR ~ 1
= “Effective shield thickness” includes shield + DCLL blanket

» Electrical system efficiency assumptions:
— 30% wall plug efficiency for H&CD - typical of NNBI

— 2 45% thermal conversion efficiency - typical of DCLL
= Also include pumping, controls, other sub-systems
= See Pilot Plant NF 2011 paper for more details
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Aspect ratio dependence of limits: k(g), By(€)

Pilot study uses 0.95xK value shown here:

3.25

3.00 —
2.75 |

2.50
2.25
2.00
1.75

1.50
1.25 -

5.0

4.5

4.0

3.5

3.0

kappa fit
Zohm

+ kappa "data"

NSTX data at low-A

>

/ — Also NSTX-U/ST-FNSF
modelling

o

/

DIII-D, ARIES-AT for higher A

.-—"""_.-—-

— k2> 1.9forA—> ©

T T
0 0.1 0.2

T T T
0.3 0.4 0.5

T
0.6

Profile-optimized no-wall
stability limit at fg5 = 50%

1
0.7

/ — Menard PoP 2004

By 2 3.1forA—>

e beta-N "data"
—peta-N fit /

Broc A2 (1+x%) By? / fas

I I
0 0.1 0.2

I I I
03 04 05

e =A1

I
0.6

0.7 »Pfus o< g [k(e) By(€) BT(S)]4
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Simplified TF magnet design equations

| n y b
Vi + Vy = =BoRoloyln| = (25) x !
2 ry
T2
1 Fo
n o+ Rk, = EBGROImﬂ(rz =) (26) % |
1 _
inner leg outer leg
Fig. 7. Geometry for force and mement balances.
F
= o+ k-1
1 (F‘: _ rl){ 1 2( ))
V, = F (rs = ik + 1))
? (r, — r1) 2 '
1
- F = EBORDIL'O:I
5% 10°B,R,
coil Nouils
- "z
Fig. 5. Lorentz forces are normal to the conductor in the poloidal k =ln ;1

plane,

From J. Schwartz, Journal of Fusion Energy, Vol. 11, No. 1, 1992
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A=2, R, = 3m device TF inboard leg showing

| for nd windin
Current per coil: 6 MA 0.167 m?winding
Winding Cd: 35.9 area

MA/m?

@D NSTX-U J. Menard - ICPP 2016
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CORC Conductor — Achieved now

857 turns @ 7 kA
(848 turns shown; a few
—_additional turns required

10
mm

Base Conductor —
Helium Gas Cooled

Copper ~

7 mm

750 turns @ 8 kA
v (750 turns shown)

SS conductor
jacket for strength
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HTS performance vs. field and fast neutron fluence

Supercond. Sci. Technol. 28 (2015) 014005

R Prokopec et al

- '2"‘:—2{ —v | unlrr. .
1 s 64k
Ak, « 50K
A—p A —v— 40K
T3 30K

.
RN e, 2.3x10% m?
4| —o—T77K
—aBAK
50 K
. . . v— 40K
10 12 14 1 30K

HoH (T)
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Y.

‘i \.'\'v,.

o " =

3 e A o
Qe A )
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_ \ '
N, . | 1 1

12 14 16

Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the c-axis (right) before and after
irradiation to a fast neutron fluence of 2.3- 10 m ™",
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Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the c-axis (right) as a
function of neutron fluence.
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R

Neutronics analysis for HTS TF shielding

Inboard Shield: A = 60cm

/ Center Column: R = 30cm
»

Qutboard Shield:
A = 30cm

Neutron fast flux (n/m?s)

1077 + _ _ . |

: Inboard Shield A = 60cm
10" oo , R,=1.87m

i A=2

1075 LN
10" N
1013_2 | B N
101? ......... OO0 R O A N

0 10 20 30 40 50 60

Distance through WC shield (cm)

£O
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Breeding blanket thickness model

Shield and blanket thickness [m]

1.4
i —+—|nboard (IB) Breeder
—#-|nboard WC Shield
1.2 Total IB WC + Breeder
- ——Qutboard Breeder
1.0 | =eeee—e—x¢ > = \: v
0.8 o
0.6 o= '-M
0.4
0.2
0.0 -

1.5 2.0 2.5 3.0 3.5 4.0
A
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High TF winding-pack current density
required to access highest B+ at lower A

Max B+ at TF coil [T]

20
19T: Present =+ | .
‘JWP CORC HTS limit 6 | —
[MA/m?] 14 1| /
——160| 12T ITER-like 12 + / NP W S—
+zg TF coil limit 10 1
Tap | (Nbsn,118T) :
=20
-0-20

Coil structure sized to maintain
< 0.3% strain on winding pack
for all cases shown here

OFRLNWAUIOON0O
[

1.5 2.0 25 A 30 3.5 4.0
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A 2 2 pilot plant scenarios have
elevated H > 1, f;c ~ 80%, |, = 6-12MA

Hyg Bootstrap fraction

1.8 0.85
: ]/‘) 0.80 W#—
i s >
) 0.75 +

1.6 / — - /‘/f /
: 0.70 + \
0.65 +
, N 7/
1.4 0.60 -
1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0

Hpeityos Ir [MA]

Jyp

1.60

1.40 ?ﬁﬁé
1.20 -

=

1.5 2.0 2.5 3.0 3.5 4.0
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A=2, R, = 3m HTS-TF FNSF / Pilot Plant

T L | ; ="
= e

Cryostat volume ~ 1/3 of ITER

B, = 4T, I, = 12.5MA

By = 4.2, By = 9%

Startup I, (OH) ~ 2MA

No joints in TF
Vertical maintenance

Pocion = 520 MW
Qeng = 1.35
P .. =73 MW

Peak n-fluence = 7 MWy/m?
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Breeding calculations nearly complete for A=2

:—um Outboard
E—uuf:r TBR —~ 092

Shep A
=
l
B

170

s L] i i1 iz 1% 14 15 18 iF 15

« Step 1- Infinite media of LiPb e
e Step 2- LiPb confined to OB FW/blanket Step 8- SiC FCI added

o Step 3- Assembly gaps added « Step 9- Stabilizing shells added

» Step 4- Homogeneous mixture of blanketin + Step 10- MTM only inserted (TBR relative to Step #9)
upper and lower ends of OB blanket « Step 11- 4 TBMs only inserted (TBR relative to Step #9)

* Step 5- FW material added « Step 12- 4 NBIs only inserted (TBR relative to Step #9)

* Step 6- Side, back, and front walls added « Step 13- all MTM, 4 TBMSs, and 4 NBIs inserted

Step 7- Cooling channels added « Step 14 — include inboard breeding blanket

Ongoing: Thin inboard blanket (10 cm) should provide TBR > 1
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Exploring liguid metal divertor design
similar to flowing water curtain systems

LM Injector system can
be assembled in a
single or double unit

LM containment structure

Shield block

Ferritic steel backing plate
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HTS ST-FNSF design with Li flow on
! i I E

Double null liquid
metal divertor system

Li flows from upper
divertor down the inboard
wall, exiting just after the
lower inboard divertor.

Separate Li cooling of
lower divertor

IR,

N =
=
M
[ITEL

I

I' ‘
I

i _I- ==l EmE

@)NSTX-U J. Menard - ICPP 2016 66



s |

Another option: LI divertor with shorter outer leg

Z [m]

MW/m?

-4.0

-5.0

-5.5

Py, =9 2 21MW/m? for R

Long-leg / Super-X

- Geometry also compatible with

 “vapor box” concepts (Ono‘/ Goldston)
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Benefits of shorter-leg LM high-heat-flux divertor:

e Significantly reduce outboard PF coil current
— Reduced PF size, force, structure

e Eliminate separate upper cryo-stat (for PF5U)

25
s ! '
< / \\ //
) 5
g OW\\\ | /
5 4 )
>, \"T—/
3 . | \\
o -15 ——Long-leg
& 20 -&-Li divertor \ /

5 | | y

PFIU PF2U PF3U PF4U PF5U PF6U PF7U PF8U
PF Coil Name

 Li wall pumping could help increase H (see Maingi talk)
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