

Recent Progress in Understanding Electron Thermal Transport in NSTX and NSTX-U

Y. Ren¹

W. Guttenfelder¹, S.M. Kaye¹, W.X. Wang¹, K. Tritz², E. Mazzucato¹, D.R. Smith³, H. Yuh⁴, B.P. LeBlanc¹, R.E. Bell¹, S. Zweben¹, K.C. Lee⁵, C.W. Domier⁶, and the NSTX Team
1. PPPL 2. JHU 3. UW-Madison 4. Nova Photonics 5. NFRI 6. UC-Davis

18th International Congress on Plasma Physics June 27th-July 1st, 2016, Kaohsiung, Taiwan

Outline

- Introduction
- Recent results on electron thermal transport in NSTX
 - Micro-tearing turbulence in NSTX high-beta and highcollisionality H-mode plasmas
 - ETG turbulence in NSTX L and H-mode plasmas
 - Fast-ion-driven Alfven eigenmodes in the core region of NSTX high-power H-mode plasmas
- NSTX-U Plans for electron thermal transport
- Summary

Spherical Tokamaks Have Some Significant Advantages over Conventional Tokamak

- The low aspect ratio of spherical tokamaks leads to improved β limit than conventional tokamaks
 - More compact and lower-cost future devices, e.g. Fusion Nuclear Science Facility (FNSF) and power plant
- The effective shaping and/or strong ExB shear from low aspect ratio lead to reduced ion-scale turbulence
 - Neoclassical ion thermal transport and different confinement scaling for H-mode plasmas Magnetic Surface

NSTX Thermal Confinement Has Strong Collisionality Scaling in H-mode Plasmas

- Ion transport is neoclassical, consistent with strong flow shear and strong shaping
- The confinement scaling is determined by electron thermal transport

Multiple Mechanisms should be Responsible for Anomalous Electron Thermal Transport

- Different mechanisms needed to account for the always anomalous electron thermal transport
 - Different radial regions
 - Core flat region (small gradient drive)
 - Core gradient region (large gradient drive)
 - Edge region (steepest gradient, connection to SOL, e.g. H-mode pedestal)
 - Different parametric regimes
 - Large/small plasma beta/collisionality, magnetic shear, ExB shear, etc.

Multiple Mechanisms should be Responsible for Anomalous Electron Thermal Transport

- Different mechanisms needed to account for the always anomalous electron thermal transport
 - Different radial regions
 - Core flat region (small gradient drive)
 - Core gradient region (large gradient drive)
 - Edge region (steepest gradient, connection to SOL, e.g. H-mode pedestal)
 - Different parametric regimes
 - Large/small plasma beta/collisionality, magnetic shear, ExB shear, etc.
- Evidence exists for gradient driven electrostatic and electromagnetic ballooning drift instabilities:
 - Low-k (ion-scale): ITG/TEM/KBM/microtearing modes
 - High-k (electron-scale): ETG modes
 - Turbulent ExB drift and magnetic flutter effects
- Fast ion driven Alfvenic eigenmodes found relevant
 - GAE and/or CAE modes
 - Alfvenic eigenmode induced electron drift orbit stochasticity

Micro-tearing turbulence in highcollisionality and high-beta H-mode plasmas

18th International Congress on Plasma Physics, Y. Ren, June, 2016

First Successful Nonlinear Microtearing Simulations for NSTX

NSTX-U

18th International Congress on Plasma Physics, Y. Ren, June, 2016

Micro-tearing Mode Predictions are Consistent with NSTX H-mode Plasmas

- As transport drops, a/L_{Te} will increase (for fixed heat flux), at some point ETG (TEM/KBM?) should become important
- This transition likely to determine limit of "favorable" v_{*} scaling

 $x = (\Phi/\Phi_a)^{1/2}$

- A representative NSTX H-mode
- Using micro-tearing-based RLW
 electron thermal diffusivity model
- Good agreement seen when microtearing linearly important

W. Guttenfelder et al., PRL (2011)

ETG turbulence in NSTX L and H-mode plasmas

18th International Congress on Plasma Physics, Y. Ren, June, 2016

A High-k Microwave Scattering System was Used to Measure Electron-scale Turbulence in NSTX

First Identification of ETG Turbulence in NSTX RF-heated L-mode Plasmas

- The measured high-k turbulence is shown to be driven by electron temperature
 - In RF-heated helium L-mode plasma (1.2 MW, 5.5 kG, 700 kA)
 - Fluctuation propagates in the electron diamagnetic direction
 - Clear reduction in turbulence spectral power at lower electron temperature gradient

ETG Turbulence can Produce Experimentally Relevant Electron thermal Transport

- Significant ETG-induced contributions to anomalous χ_e confirmed with global gyrokinetic code GTS
- Strong energy coupling to electron version of GAM (very high- ω ZF)

Large ELM Event induces Density Profile Steepening in the Core Region

After the ELM event:

- Large density gradient developed in the high-k measurement region.
- Electron temperature gradient also increases
- Electron density has only a moderate decrease
- Electron temperature remains essentially constant
- No large MHD mode appears before and right after the ELM event

Reduced ETG Turbulence Intensity and Electron Thermal Transport is Observed with Density Profile Steepening

Electron thermal diffusivity is

ELM event

decreased by a factor of ~2 after the

- Significant decrease in spectral power in electron-scale observed for $k_{\perp}\rho_s \lesssim 10$
- 20 10 Ch. 4 Ch. 3 **Before ELM** 15 10 High-k S/n_e² (A. U.) $\chi_{e} (m^{2/s})$ Before ELM region Ch. 1 Upper bound Ch. 4 10⁻¹⁰ Ch. 3 5 After ELM After ELM 10⁻¹¹ $\frac{\frac{1}{20}}{\frac{S}{n_e^2}} \propto \left(\frac{\delta n_e}{n_e}\right)^2$ 5 10 15 $k_{\perp}^{}\rho_{s}^{}$ 145 135 140 125 130 120 R (cm)
 - See Y. Ren et al., PRL 2011, PoP 2012
 - Density gradient stabilization of high-k turbulence further confirmed in J. Ruiz-Ruiz et al., PoP 2015

Nonlinear ETG Simulations Reproduce Observed Dependence of Electron Transport on Density Gradient

- Experimental Q_e is found to decrease after the ELM event with large density gradient
- The same trend is found from nonlinear ETG simulations, but does not agree quantitatively

Predicted Q_e is Sensitive to Electron Temperature Gradient

- Before ELM, a 20-30% increase in a/L_{Te} is able to match the experimental Q_e
- After ELM, increasing a/L_{Te} by 40% after still cannot match experimental Q_e

Fast-ion-driven Alfven eigenmodes in the core region of NSTX high-power Hmode plasmas

18th International Congress on Plasma Physics, Y. Ren, June, 2016

Core T_e Flattening in High-power NBI H-mode plasmas is Observed to be Correlated with *AE Activities

- Core T_e flattening correlated with NBI power
 - No simultaneous increase in central $\rm T_e$
- Almost a factor of 10 increase in core χ_e (r/a~0.2)
 - χ_e calculated with TRANSP power balance analysis
 - Calculated neutron rate with classical fast particle slowingdown in good agreement with measured neutron rate
- Increased *AE (GAE/CAE) activity observed from edge Mirnov measurement

D. Stutman et al., PRL (2009)

ORBIT Guiding Center Code is Used to Simulate GAE Effects on Electron Thermal Transport

Decrease in *AE Activity Measured by BES Corresponds with Peaking of Central Electron Temperature

- T_e remains peaked even with large single mode (bulk *AE still largely suppressed)
 - Consistent with that large number of modes needed to induce stochastic thermal transport

Improved Capabilities of NSTX-U will Strongly Support the Study of Electron Thermal Transport

- Doubled B_T, I_P and NBI-heating power
 - 3-6 times lower in v_e^* ; flow/q profile control

Improved Capabilities of NSTX-U will Strongly Support the Study of Electron Thermal Transport

- Doubled B_T, I_P and NBI-heating power
 - 3-6 times lower in v_e^* ; flow/q profile control
- A new FIR high-k_θ scattering system being designed at UC-Davis
 - To be installed for FY17 run campaign

Improved Diagnostics on NSTX-U will Strongly Support the Study of Electron Thermal Transport

- Doubled B_T, I_P and NBI-heating power
 - 3-6 times lower in ν_e^* ; flow/q profile control
- A new FIR high-k_θ scattering system being designed at UC-Davis
 - To be installed for FY17 run campaign
- A DBS/CPS system will be installed for FY17 run campaign
 - Measure ion-scale turbulence
 - Able to measure magnetic fluctuations (CPS)
- 48 BES channels are now available on NSTX-U
 - 16 more than NSTX

Micro-tearing turbulence gyrokinetic simulation

NSTX-U T&T Research Plan Aims to Identify Operational Regimes of Instabilities Responsible for Electron Thermal Transport

- Near-term plan
 - Identify dominant modes in lower v_e^* H-mode plasmas of NSTX-U
 - Characterize low/high-k turbulence and electron thermal transport in isolated regimes of micro-instabilities guided by GK simulations
 - BES/reflectometry for CAE/GAE measurements with a range of $B_T\!$, $I_p\!$, ν_e^* and $P_{NBI}\!$, coupled with ORBIT code
 - Cold pulse propagation (Laser Blow-off and ME-SXR) for profile stiffness
 - Couple with turbulence diagnostics, GK simulations and experimental tools
- Long term plan
 - Identify operational regimes of ETG, microtearing, AE (CAE/GAE) and ITG/TEM/KBM using the full set of turbulence diagnostics
 - Expand turbulence and electron thermal transport parametric dependence, e.g. on β , ρ^* , T_i/T_e and Z_{eff}
 - Study electron thermal transport and turbulence in long pulse and fully non-inductive scenario
 - Develop physics-based reduced models for electron thermal transport

Summary

- NSTX has made significant progress towards understanding anomalous electron thermal transport
 - First nonlinear gyrokinetic simulation of microtearing turbulence to produce experimental confinement scaling and transport in NSTX H-mode plasmas
 - ETG turbulence driving electron thermal transport in L and Hmode plasmas, supported by linear and nonlinear gyrokinetic simulations
 - *AE-induced core Te flattening, consistent with electron stochastic transport from ORBIT simulations
- Electron thermal transport will be the key part of the transport and turbulence research plan for NSTX-U
 - Ip ~2 MA, BT ~1 T, 2nd NBI (~12 MW), a suite of turbulence diagnostics, e.g. new high-k scattering system and DBS/CPS

Backup slides

18th International Congress on Plasma Physics, Y. Ren, June, 2016

Beam Emission Spectroscopy (BES) Diagnostic Provides the Capability of Measuring Internal *AE Mode Structure

- 32 detection channels for NSTX and to be upgraded to 48 channels for NSTX-U
- 56 sightlines in radial and poloidal arrays spanning core to SOL
- 2 MHz sampling
- $k_{\perp}\rho_i \le 1.5$ & 2-3 cm spot size
- Field-aligned optics with high throughput (etendue = 2.3 mm²-ster)

D.R. Smith et al., Rev. Sci. Instrum (2010)

Threshold Gradients for ETG modes are much Higher after the ELM

• Before ELM, ETG is largely unstable After ELM, ETG is largely stable Before ELM After ELM 6 $\Box R_0 / L_{T_e}$ measured 10 -8--8 5 $\star (R_0/L_{T_e})_{critic}$ by GS2 138 136 134 134 136 138

Stability analysis performed with GS2 code (Kotschenreuther et al., 1995)

R (cm)

18th International Congress on Plasma Physics, Y. Ren, June, 2016

R (cm)

Increase in ETG Threshold Gradient is due to Large Density Gradient

Before ELM, ETG is largely unstable
 After ELM, ETG is largely stable

 Manually decreasing R/L_{ne} brings down critical gradient as expected from linear theory (e.g. Jenko et al, 2001)

$$(R_0/L_{T_e})_{crit} = max\{(1 + Z_{eff}\frac{T_e}{T_i})(1.33 + 1.99\hat{s}/q)f(\epsilon, \kappa, \delta, \cdots), \frac{0.8R_0/L_{n_e}}{1.33}\}$$

Stability analysis performed with GS2 code (Kotschenreuther et al., 1995)

ETG Turbulence Stabilization by Reversed Magnetic Shear is Responsible for ITB Formation

HHFW only with beam blips

Yuh et al., NF 2009 and PRL 2011

NSTX-U

ETG Turbulence Stabilization by Reversed Magnetic Shear is Responsible for ITB Formation

Yuh et al., NF 2009 and PRL 2011

NSTX-U

ETG Turbulence Stabilization by Reversed Magnetic Shear is Responsible for ITB Formation

NSTX-U

Predicted Q_e is Sensitive to Electron Temperature Gradient

- Before ELM, a 20-30% increase in a/L_{Te} is able to match the experimental Q_e
- After ELM, increasing a/L_{Te} by 40% after still cannot match experimental Q_e

Trapped Electron Mode (TEM) Destabilized by Large Density Gradient may Contribute to Transport

- Before ELM, a 20-30% increase in a/L_{Te} is able to match the experimental Q_e
- After ELM, increasing a/L_{Te} by 40% after still cannot match experimental Q_e
- Large TEM-induced transport (~30 MW) is predicted after ELM without E×B shear stabilization
- Using experimental E×B shear almost completely suppresses transport
 → does not require much residual transport to match experimental Q_e

