

Aerosol Formation and Hydrogen Co-Deposition by Colliding Ablation Plasma Plumes ISLA-2, 2011 Princeton Plasma Physics Lab.

Yoshi Hirooka¹⁾, N. Omoto²⁾, T. Oishi²⁾ and K.A. Tanaka²⁾ ¹⁾National Institute for Fusion Science ²⁾Osaka University

Table of Contents

1. Motivations

- IFE chamber clearing issue
- Tritium inventory issue

2. Experimental

– LEAF-CAP setup

3. Highlight data

- CCD+ICCD camera observations
- Visible spectroscopy
- Ion mass analysis
- Langmuir probe measurements
- TEM/SEM observations
- TDS for H-retention measurements

4. Summary and future plans

National Ignition Facility (NIF)

Implosion debris generation dynamics

Penetration depth

Irradiation intensity of the X-rays, alpha particle, carbon, a hydrogen, heavy hydrogen, and tritium ions in the first wall surface in conditions with a nuclear fusion output 400MJ and a chamber radius of 4 m.

The calculation result of energy deposited on the first wall by the X-rays and charged particles.

After Yamamoto et al. in JSFP (2006)

KOYO-FAST reactor with a liquid metal 1st wall

After T. Kunugi et al. in FED 83(2008)1888.

Phase diagram of the Li-PB system

After Grube and Klaiber (1938).

Motivations

- <u>The chamber clearing issue</u> In a high-repetition IFE reactor, along with implosions, the interior of target chambers will be exposed repeatedly to short-pulse X-ray, DT and He ash particles and pellet debris . Wall materials will be eroded by ablation, leading to the formation of aerosol particles that can scatter subsequent laser beams, i.e. limiting the repetition rate.
- <u>The radiation safety issue</u> If ablated materials are re-deposited elsewhere on the wall, which extends the wall lifetime, tritium may be co-deposited.

Ion, laser beam-matter interactions

Ion beam-matter

Laser beam-matter

<u>Laboratory Experiments on Aerosol Formation</u> by <u>Colliding Ablation Plumes (LEAF-CAP)</u>

- A YAG laser beam (1064nm, 6ns, 10Hz) is first converted into the 3rd harmonic (355nm).
- The 3ω beam is split into two beams and <u>line-focused</u> to irradiate two arc-shaped targets at power densities up to ~30J/cm²/pulse.
- Two targets generate ablation plumes, which will collide with each other in the center-of-arc region.
- Used as the target material are Cu, Al, W, <u>C</u>, Pb and Li. All ablation experiments are conducted in vacuum ≤ 10⁻⁵Torr, except that hydrogen co-deposition experiment is done at 10Pa.

The LEAF-CAP experimental setup

CCD images of colliding ablation plumes (3~5J/cm²/pulse)

ICCD images of colliding Cu-Cu plumes

(4.3J/cm²/pulse, Δt=5ns)

ICCD camera images of colliding C-C plumes

(29J/cm²/pulse)

Distance-from-origin for C-plumes

ICCD camera images of colliding Li-Li plumes

Distance-from-origin for Li-plumes

Visible spectroscopy of colliding ablation plumes

Plasma parameters of colliding ablation plumes

Plasma density (1/cc)

Electron temperature (eV)

Plasma density vs. laser power density

(Power-laws indicative of the multi-photon processes)

Ionic fractions in lithium plasma (NIFS A&M database)

Te=1eV

Ionic fractions in carbon plasma (NIFS A&M database)

Carbon (Arnaud and Rothenflug 1985)

Ion mass spectrometry of Li plumes

Mass-to-charge ratio

Aerosol formation by colliding ablation plumes

Aerosol formation model for metals

Carbon nano-tubes from LEAF-CAP exps. at 2.2J/cm²/pulse for 3hrs

Fullerene "onion" from LEAF-CAP exps. (at 5J/cm²/pulse for 1hr)

Aerosol formation model for carbon

Colliding carbon plumes in hydrogen (at 10J/cm²/pulse and 10Pa of H₂)

Wavelength [nm]

TDS: Hydrogen retention in C-deposits

The H/C ratio is of the order of 0.1

Thermal desorption spectra from Li-H co-deposits

Hydrogen co-deposition in Li and Pb

Hydrogen pressure during co-depositon (Pa)

Summary and future plans

- First-of-a-kind experiments on the aerosol formation by colliding ablation plasma plumes have been conducted using a laboratory laser-beam setup: LEAF-CAP.
- Colliding ablation plumes of Li and Pb have demonstrated to form aerosol in the form of droplet, the diameter of which ranges from 100nm to $10\mu m$. As opposed to that, colliding carbon plumes have shown the formation of CNTs and CMTs.
- Ablated Li-deposits have been found to retain hydrogen as much as (H/Li)~0.3, which can be extended to a 10Hz power reactor with 1kJ/m²/pulse with such that 50kg-T/m²/day ! (•_•;) over a room temperature 1st wall.

Laser ablation yields of Li and Pb

