

Supported by

Liquid Lithium Divertor surface temperature dynamics and edge plasma modification under plasma-induced heating and lithium pre-heating

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

A. G. McLean **RIDGE** J.-W. Ahn, T.K. Gray, R. Maingi, M. Bell, R. Bell, M.A. Jaworski, H. Kugel, B.C. Lyons, R.E. Nygren, L. Roguemore, F. Scotti, C.H. Skinner

> 2nd ISLA **PPPL, April 27, 2011**

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Outline

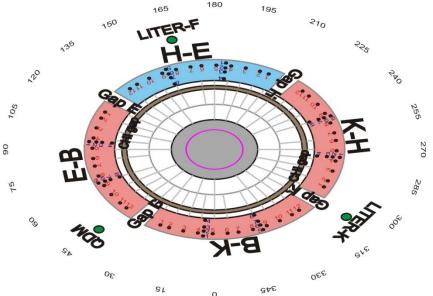
- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions
- Time permitting: Thermal diagnostic improvements on NSTX for 2011

Outline

- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions

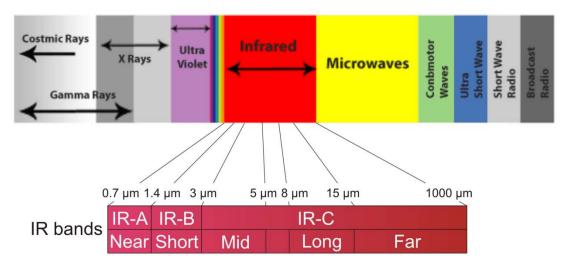
The IR system on NSTX is designed to overcome limitations inherent in a complex Tokamak environment

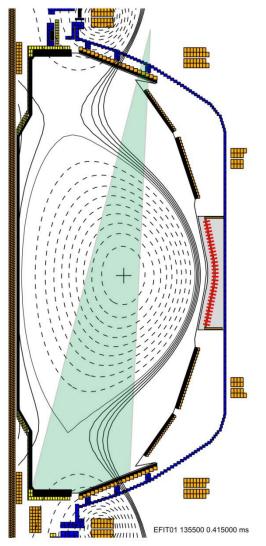
- Accurate IR measurements are essential for heat load analysis on plasma-facing components (PFCs) during plasma operation, especially in the divertor region
 - Transient heat load can exceed 10 MW/m²
 - Localize hot spots and significant impurity sources
- Use of lithium coatings in NSTX make assumptions of high surface emissivity inaccurate
 - e.g., ϵ of graphite >0.85, ϵ of molten lithium <0.1
- Primary diagnostic effort to move from single-band to dual-band infrared observations
 - Technique measures temperature based on the ratio of integrated IR emission in two IR bands, not single band intensity → Less dependent on emissivity



The Liquid Lithium Divertor (LLD) was used extensively in the 2010 NSTX campaign

- Four plates extending toroidally around the outer divertor
- 12, 500W cartridge heaters and 44 type K thermocouples provide active control of each plate's temperature
- Electrically heated to
 - 100-199°C in 7 runs days
 - 200-299°C in 9 run days
 - Up to 320°C in 3 run days
- Heated by repeated plasma discharge exposure to
 - 100-130°C in 3 run days
- Heated by hot forced air to
 - 150-180°C in 2 run days
- Only heating to ≥ 180°C maintained Li as liquid between discharges





NSTX has extensive infrared coverage for surface temperature and heat flux diagnosis

- Two slow (30 Hz) single-band IR cameras
 - Indigo Omega, 30 Hz, 160x128 pixel uncooled microbolometer FPA, 3.4 x 3.7 x 4.8 cm
 - 7-13 μm, 12-bit, 0-700°C range, ZnSe window
 - 15° FOV of lower divertor, ~0.7 cm/pixel resolution
- One fast (1.6-6.3 kHz) dual-band IR camera
 - Santa Barbara Focal Plane (Lockheed Martin) ImagIR 128x128, 40µm pixel HgCdTe FPA, LN₂-cooled
 - QE>90% from 1.5-11 µm, 14-bit, <20 mK NETD
- 2011 addition of dual-color, wide angle IR camera

NSTX fast IR camera field of view

Calibration of the ratio of emission intensities to temperature removes emissivity as a variable

- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR regions, not single band intensity
- Mathematically
 - Planck's law for photon emittance [ph/s/cm²/µm]
 - Radiant emittance from source some fraction of that from a blackbody source [W/cm²/µm]

$$Q_{BB}(\lambda,T) = \frac{2\pi c}{\lambda^4 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right) - 1\right]} \qquad W(\lambda,T) = \frac{hc}{\lambda}Q(\lambda,T)$$

 $I_{\lambda,surf}(\lambda,\theta,\phi,T) = \varepsilon_{\lambda,\theta}(\lambda,\theta,\phi,T) \cdot I_{\lambda,BB}(\lambda,T)$

$$\underbrace{I_{\lambda_{1},surf}}_{I_{\lambda_{2},surf}} = \frac{\varepsilon_{\lambda_{1},\theta}}{\varepsilon_{\lambda_{2},\theta}} \cdot \frac{I_{\lambda_{1},BB}}{I_{\lambda_{2},BB}}$$

Calibration of the ratio of emission intensities to temperature removes emissivity as a variable

- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR regions, not single band intensity
- Mathematically
 - Planck's law for photon emittance [ph/s/cm²/µm]
 - Radiant emittance from source some fraction of that from a blackbody source [W/cm²/µm]

$$Q_{BB}(\lambda,T) = \frac{2\pi c}{\lambda^4 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right) - 1\right]} \qquad W(\lambda,T) = \frac{hc}{\lambda} Q(\lambda,T)$$

$$I_{\lambda,surf}(\lambda,\theta,\phi,T) = \varepsilon_{\lambda,\theta}(\lambda,\theta,\phi,T) \cdot I_{\lambda,BB}(\lambda,T)$$

$$\frac{I_{\lambda_1,surf}}{I_{\lambda_2,surf}} = \frac{\varepsilon_{\lambda_1,\theta}}{\varepsilon_{\lambda_2,\theta}} \cdot \frac{I_{\lambda_1,BB}}{I_{\lambda_2,BB}}$$

$$I_{\lambda,BB}(\lambda,T) = \frac{2\pi hc^2}{\lambda^5 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right) - 1\right]} \cong \frac{2\pi hc^2}{\lambda^5 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right)\right]}, \text{ since } exp(hc/\lambda kT) \gg 1$$

$$\vdots$$

$$T = \frac{hc}{k} \cdot \frac{\left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right)}{\left[\ln\left(\frac{\varepsilon_{\lambda_2,\theta}}{\varepsilon_{\lambda_1,\theta}}\right) + \ln\left(\frac{I_{\lambda_1,surf}}{I_{\lambda_2,surf}}\right) + \ln\left(\frac{\lambda_1^{-5}}{\lambda_2^{-5}}\right)\right]}$$

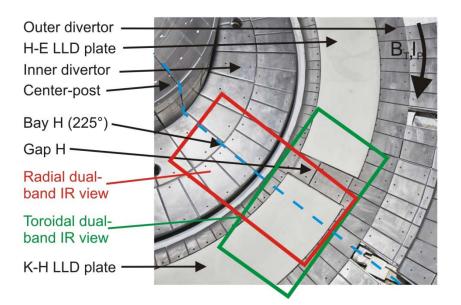
Calibration of the ratio of emission intensities to temperature removes emissivity as a variable

- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR regions, not single band intensity
- Mathematically
 - Planck's law for photon emittance [ph/s/cm²/µm]
 - Radiant emittance from source some fraction of that from a blackbody source [W/cm²/µm]
- If emissivity, ε, in both wavelengths regions is equal, first term in denominator falls out

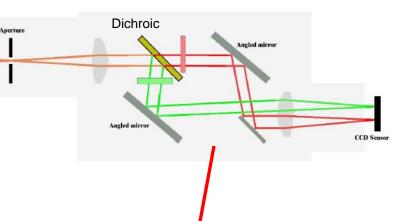
0 NSTX

$$Q_{BB}(\lambda,T) = \frac{2\pi c}{\lambda^4 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right) - 1\right]} \qquad W(\lambda,T) = \frac{hc}{\lambda} Q(\lambda,T)$$

$$I_{\lambda,surf}(\lambda,\theta,\phi,T) = \varepsilon_{\lambda,\theta}(\lambda,\theta,\phi,T) \cdot I_{\lambda,BB}(\lambda,T)$$

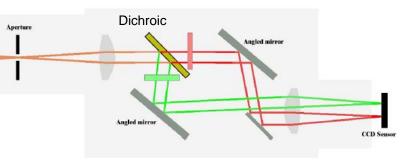

$$\frac{I_{\lambda_1,surf}}{I_{\lambda_2,surf}} = \frac{\varepsilon_{\lambda_1,\theta}}{\varepsilon_{\lambda_2,\theta}} \cdot \frac{I_{\lambda_1,BB}}{I_{\lambda_2,BB}}$$

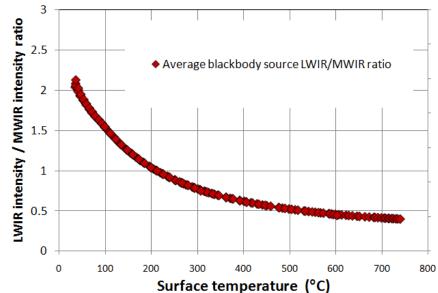
$$I_{\lambda,BB}(\lambda,T) = \frac{2\pi hc^2}{\lambda^5 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right) - 1\right]} \cong \frac{2\pi hc^2}{\lambda^5 \cdot \left[exp\left(\frac{hc}{\lambda kT}\right)\right]}, \text{ since } exp(hc/\lambda kT) \gg 1$$


$$\vdots$$

$$T = \frac{hc}{k} \cdot \frac{\left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right)}{\left[\ln\left(\frac{\varepsilon_{\lambda_2,\theta}}{\varepsilon_{\lambda_1,\theta}}\right) + \ln\left(\frac{I_{\lambda_1,surf}}{I_{\lambda_2,surf}}\right) + \ln\left(\frac{\lambda_1}{\lambda_2}^5\right)\right]}$$

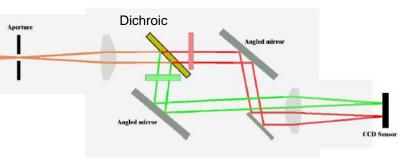
- Pioneering adaptor based on new commercial IR optical capabilities
- An optical splitter is inserted between the IR camera and lens
 - Contains an IR-specific custom dichroic beamsplitter
 - Diffractive optical element (DOE) hybrid singlet lenses for low chromatic aberration
 - Projects separate IR wavelengths side-by-side on the camera's detector

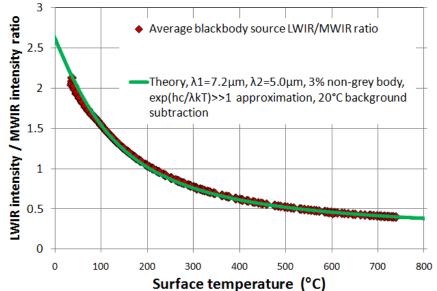

Dual-band IR adaptor layout



- Pioneering adaptor based on new commercial IR optical capabilities
- An optical splitter is inserted between the IR camera and lens
 - Contains an IR-specific custom dichroic beamsplitter
 - Diffractive optical element (DOE) hybrid singlet lenses for low chromatic aberration
 - Projects separate IR wavelengths side-by-side on the camera's detector
- Intensity ratio calibrated vs. temperature exsitu using a blackbody source, and in-situ by artificially heating the LLD

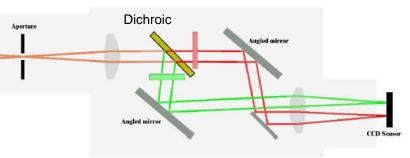
Dual-band IR adaptor layout

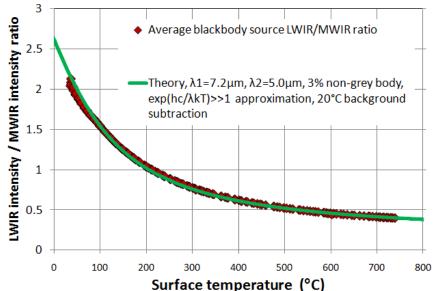

Dual-band intensity ratio calibration



- Pioneering adaptor based on new commercial IR optical capabilities
- An optical splitter is inserted between the IR camera and lens
 - Contains an IR-specific custom dichroic beamsplitter
 - Diffractive optical element (DOE) hybrid singlet lenses for low chromatic aberration
 - Projects separate IR wavelengths side-by-side on the camera's detector
- Intensity ratio calibrated vs. temperature exsitu using a blackbody source, and in-situ by artificially heating the LLD

Dual-band IR adaptor layout


Dual-band intensity ratio calibration

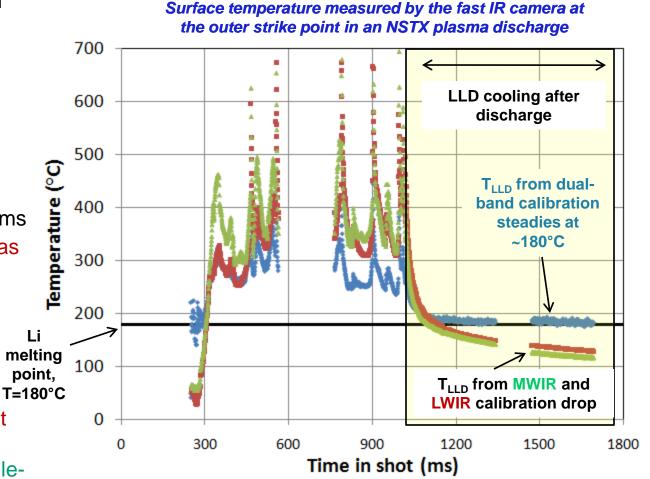


- Pioneering adaptor based on new commercial IR optical capabilities
- An optical splitter is inserted between the IR camera and lens
 - Contains an IR-specific custom dichroic beamsplitter
 - Diffractive optical element (DOE) hybrid singlet lenses for low chromatic aberration
 - Projects separate IR wavelengths side-by-side on the camera's detector
- Intensity ratio calibrated vs. temperature exsitu using a blackbody source, and in-situ by artificially heating the LLD
- Dual-band IR cameras now available from three companies worldwide
 - Integrate two detecting elements into each pixel
 - However, all limited to ≤300 Hz frame rate
 - \$200+k cost, 3-6 month lead time
- Optical image splitter: \$20k total cost, adaptable to any IR camera

Dual-band IR adaptor layout

Dual-band intensity ratio calibration

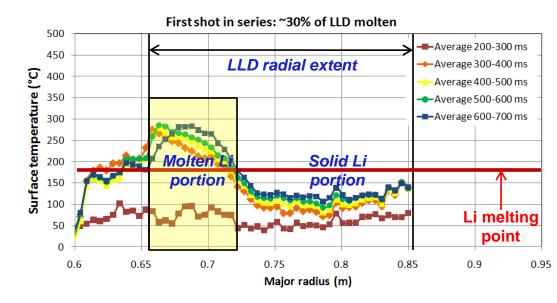
Interpretation of NSTX data viewing the LLD in single-band intensity vs. dual-band ratio demonstrates the technique


 Independent calibrations in both single-bands (MWIR and LWIR), and calibration using the dual-band ratio are performed

Interpretation of data in single-band intensity vs. the dualband ratio demonstrates that the technique works

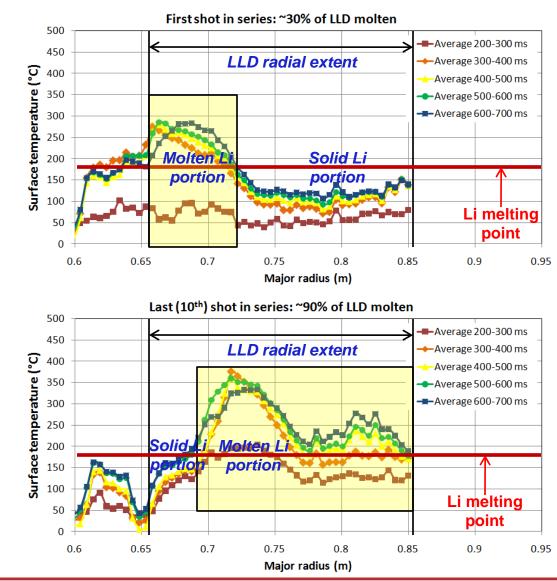
- Independent calibrations in both single-bands (MWIR and LWIR), and calibration using the dual-band ratio are performed
- In single-band results, apparent LLD surface temperature reduces monotonically after ~1000 ms
 - Change in emissivity as Li solidifies not accounted for
- However, dual-band calibrated temperature steadies at Li melting temperature
 - Indicator of latent heat of solidification
- Bonus: Ratio between singleband and dual-band temperature is a measure of surface emissivity

* All subsequent data shown is dual-band


Outline

- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions

Incremental plasma exposure in discharge series on the LLD causes the melted area to increase


- Heating of the LLD surface over a series of repeat discharges demonstrates how the Li surface is heated
 - ~30% of total LLD surface at > Li melting at beginning of series
 - Melted fraction does not change significantly in one discharge

Incremental plasma exposure in discharge series on the LLD causes the melted area to increase

- Heating of the LLD surface over a series of repeat discharges demonstrates how the Li surface is heated
 - ~30% of total LLD surface at > Li melting at beginning of series
 - Melted fraction does not change significantly in one discharge
- Melted area increases to ~90% of LLD surface by end of discharge series

Transient power excursions (ELMs) on the LLD cause brief heating of surface to >500°C

- ELMs can occur frequently on the LLD, depending on plasma geometry and conditions
- Temperature during ELMs briefly (<5 ms) reach >400°C
- Further study required to determine whether this may be a significant Li evaporation loss mechanism

500

450

400

350

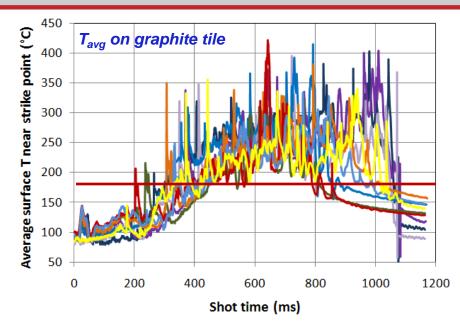
300

250

200

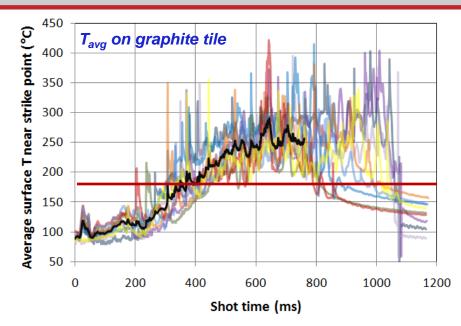
780

Surface temperature (°C)

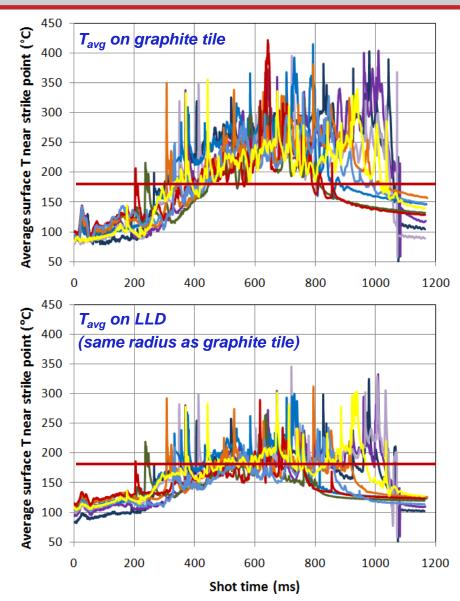


Outline

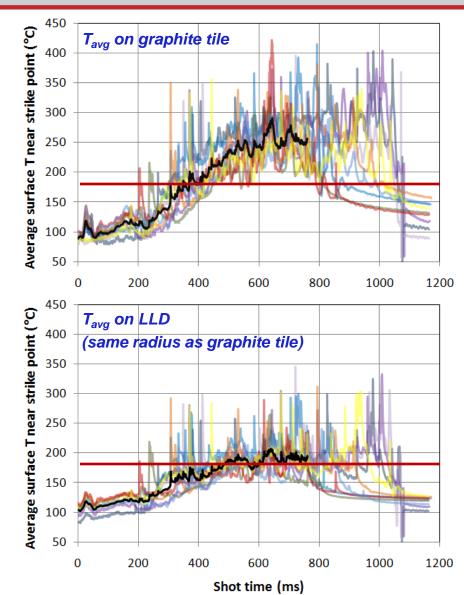
- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions



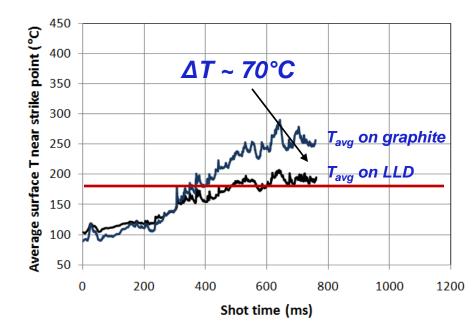
- Series of 10 repeat discharges with outer strike point on the LLD
- Graphite and LLD in this case begins with T_{Li}~70°C
- T_{avg} on graphite gap tile increases through all shots in SQRT(t) fashion



- Series of 10 repeat discharges with outer strike point on the LLD
- Graphite and LLD in this case begins with T_{Li}~70°C
- T_{avg} on graphite gap tile increases through all shots in SQRT(t) fashion
 - Average T_{surface} of ~250°C
- Falls back to ambient post-discharge

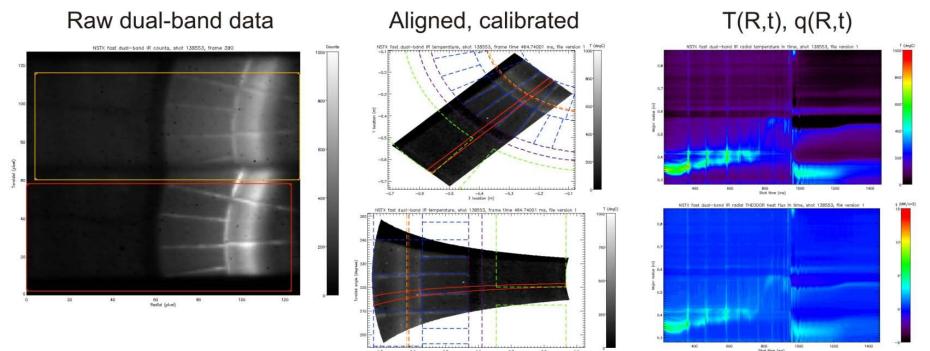


- Series of 10 repeat discharges with outer strike point on the LLD
- Graphite and LLD in this case begins with T_{Li}~70°C
- T_{avg} on graphite gap tile increases through all shots in SQRT(t) fashion
 - Average T_{surface} of ~250°C
- Falls back to ambient post-discharge
- T_{avg} plotted at same radius, but on LLD

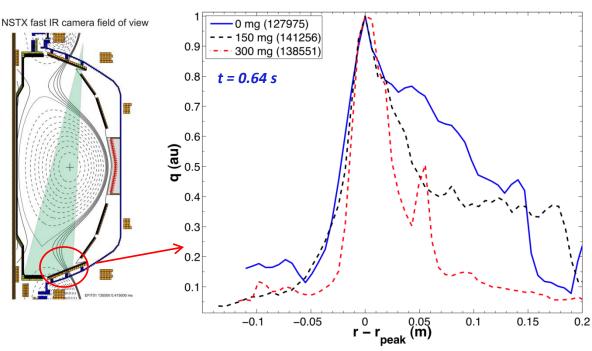


- Series of 10 repeat discharges with outer strike point on the LLD
- Graphite and LLD in this case begins with T_{Li}~70°C
- T_{avg} on graphite gap tile increases through all shots in SQRT(t) fashion
 - Average T_{surface} of ~250°C
- Falls back to ambient post-discharge
- T_{avg} plotted at same radius, but on LLD
- T_{avg} on LLD surface gravitates at T_{melt,Li} (average T_{surface} of ~180°C) throughout discharges, increases with ELMs
 - Efficient heat removal in liquid Li?
 - Li radiation?
 - Vapor shielding playing a role?

- Series of 10 repeat discharges with outer strike point on the LLD
- Graphite and LLD in this case begins with T_{Li}~70°C
- T_{avg} on graphite gap tile increases through all shots in SQRT(t) fashion
 - Average T_{surface} of ~250°C
- Falls back to ambient post-discharge
- T_{avg} plotted at same radius, but on LLD
- T_{avg} on LLD surface gravitates at T_{melt,Li} (average T_{surface} of ~180°C) throughout discharges, increases with ELMs
 - Efficient heat removal in liquid Li?
 - Li radiation?
 - Vapor shielding playing a role?
- Insufficient energy to maintain Li 'bulk' at Li melting temperature
 - Measured response dominated by thin upper surface


Outline

- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions


The IDL-based FURNACE analysis suite integrates dual-band IR calibration and analysis for NSTX database

- Semi-automated image alignment, (spatial/temporal/temperature) calibration, and heat flux calculation for any shot in the 2010 NSTX database
 - Ratio profile highly dependent on accurate band image alignment
- Incorporation of 1-D Carslaw & Jaeger heat flux calculation and THEODOR (A. Herrmann) for determination of 2-D heat flux (q)
 - Adds thin layer with poor thermal contact, artificially high heat transmission coefficient, α
 - Value of α estimated based on power balance through the shot
- 1-D vs. radius, 1-D vs. time, 2-D output for ease of visualization

Divertor λ_q contracts with increasing lithium deposition

- Type V ELMs eliminated from discharges with Li deposition
 - Some sporadic type I ELMs are still present
 - Responsible for some of the contraction in IR profiles
- λ_q^{div} contracts further with increasing lithium deposition
- This effect is confirmed by dualband IR measurements

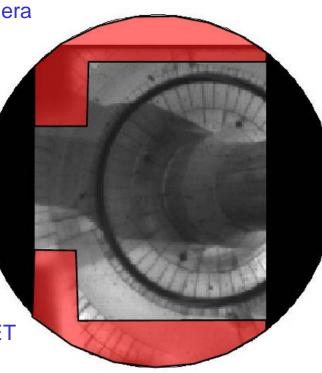
	0 mg	150 mg	300 mg
λ_q^{div} (cm)	14.1	13	7
λ_q^{mid} (cm)	0.98	0.74	0.37

Outline

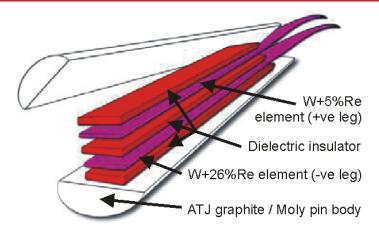
- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions

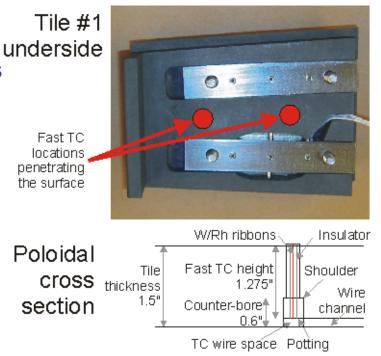
LLD temperature dynamics provide a glimpse of an operating regime for Li as a Tokamak first-wall material

- Dual-band IR measurement of LLD surface proven effective
- Front face thermal properties of the LLD are dominated by the Cu substrate → See the poster on Friday
- Surface temperature dynamics heavily dependent on total surface area with T>T_{melt,Li}
- LLD surface shows significant signs of clamping in peak and radially averaged temperature compared to graphite where no clamping occurs
- Deposition of increasing amounts of Li leads to contraction of the heat flux profile → Adds to challenge

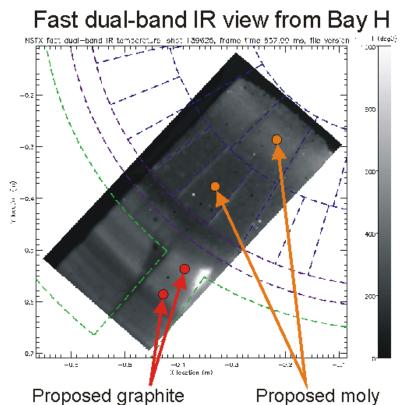

Outline

- Dual-band infrared technique demonstrated in NSTX in 2010
- Li melt dynamics on the LLD
- LLD vs. graphite tile surface temperature: Observation of clamping
- Edge plasma modification with and without Li deposition
- Conclusions
- *Time permitting: Thermal diagnostic improvements on NSTX for 2011*


- Wide-angle, high-resolution temperature and heat flux measurements
 - Dynamic range similar to existing dual-band camera
 - Straightforward observation of non-axisymmetric phenomenon
- Two color: 8-10 μm and 10.5-13 μm in the LWIR band
 - FLIR Tau 640x480, 30 Hz, LWIR microbolometer camera
- Radial/toroidal configurations
 - Diagnosis of Moly tiles
 - High-res radial profile out to R=120 cm
 - 180° coverage of OSP
 - 4 mm spatial resolution
- Optical relay to locate camera outside of magnetic field
 - Re-entrant tube with CVD diamond window
 - Allows 450 ℃ bake uncooled
 - Reflective ellipsoidal light collection (based on ITER/JET design)
 - BBAR coated ZnSe optics, Au-coating reflective surfaces

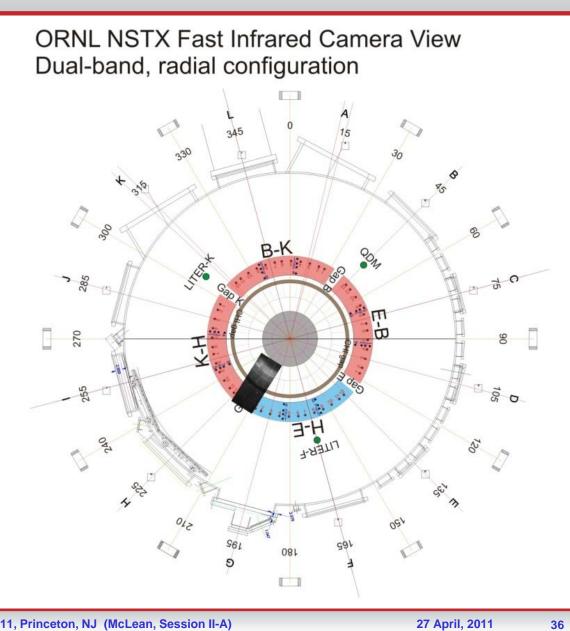


- Standard TC junctions have ~100 ms response time due to thermal mass
 - Existing array of TCs in NSTX not active during plasma discharges
- Junction in 'eroding' or 'self-renewing' thermocouples forms dynamically between ribbons (0.0015" thick) separated by thin (0.0002") dielectric insulator layers
 - Used in transient high heat-flux environments (rockets, gun barrels, recently on C-Mod)
 - ~1 ms response time, in direct plasma contact to provide direct benchmark of heat flux measured by infrared cameras
- Strong collaboration with patent holder, Nanmac (Ma. US, <u>www.nanmac.com</u>)
- High temperature Type C design
 - Tungsten (W) / Rhenium (Re), 0-2320°C range

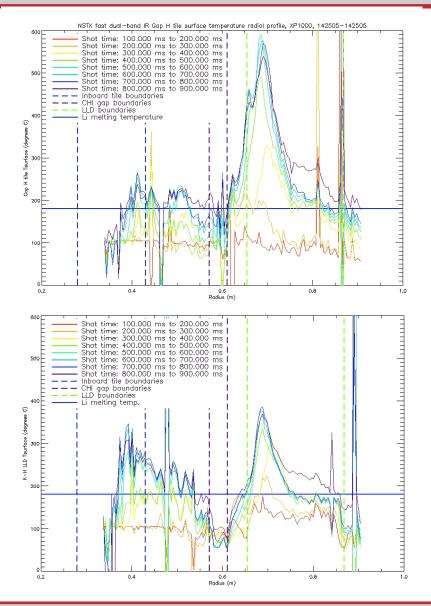


Two fast thermocouple have been installed for use in 2011

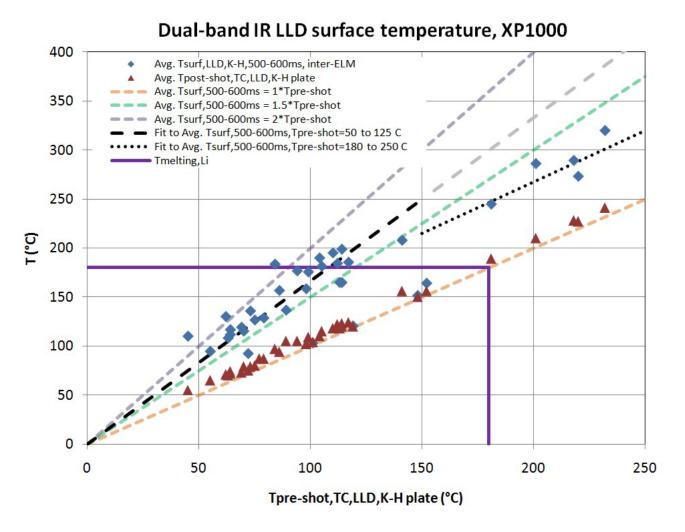
- Initially, single pair of self-renewing TCs with graphite body installed in this vent
 - Units in Gap H tile 1
 - Optimal observation by IR cameras
 - Overlaps radial extent of Langmuir probe array
- Additional pair of Mo-body TCs
 - Installation in Mo tile row next vent
- High temperature twisted Type C wire
 - Omega EXGG-C glass braided (max 427°C)
 - Twisted for low noise, covered with fiberglass sleeving (Markel Thermoflex-1200, max 650°C)
 - Assembly baked to 400°C for 16 hours (Jurczynski)
- High-speed (1 kHz) integrated signal conditioning, cold-junction compensation, plus isolation and self calibration
 - VTI EX1000A series controller (32 channels)
 - Ethernet for post-shot upload to MDSplus


fast TC locations (2011) fast TC locations (2012)

Backup slides

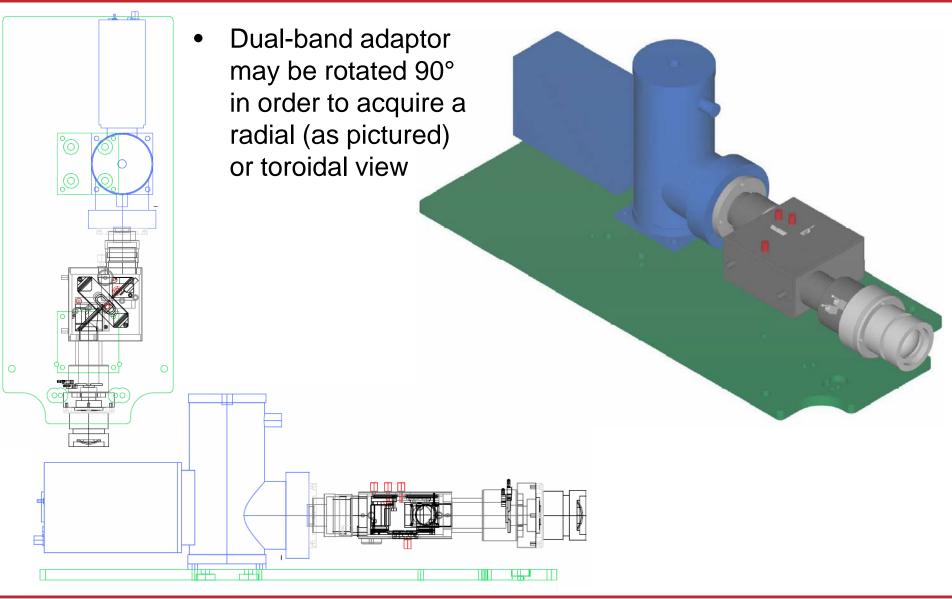


Peak temperature on LLD significantly less than that of Gap H tile


- Peak temperature of LLD at OSP significantly less than that on graphite
- Peak temperature on LLD surface reached prior to that on graphite
- Larger radial fraction of LLD surface reaches Li melting temperature

Backup slides

- T_{avg} of LLD surface at equal points in repeat shots as LLD heats up
- Suggests that thermal capacity of Li layer does not substantially change with LLD bulk temperature

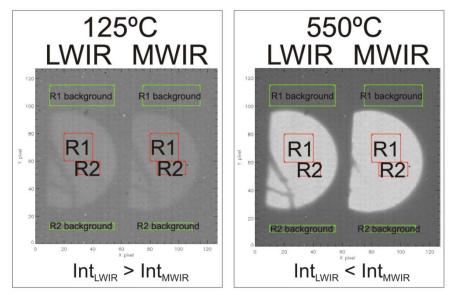


Primary dual-band IR adaptor components

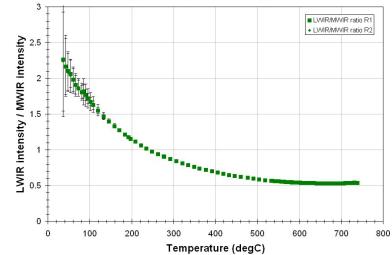
- Long-wave pass dichroic beamsplitter
 - Lambda Research Optics (CA, US)
 - Long-wave pass (7-10 μ m transmit with T_{avg}~92%)
 - Medium-wave reflect (4-6 µm reflect with T_{avg}~99%)
- Image splitter optical platform
 - CAIRN Research OptoSplit II (UK)
 - Extensively modified for operation in IR
 - Precision multi-axis optical alignment, focusing, flexibility
- Lenses
 - Broadband AR-coated Diffractive Optical Element (DOE) hybrid singlet lenses
 - 10X reduction in chromatic aberration, reduced spherical aberration, improved SNR compared to meniscus lenses
 - II-VI Infrared (PA, US)
- Shortwave pass (SWP) and longwave pass (LWP) IR filters to limit spectral contamination in each channel
 - Reynard Corporation (CA, US)
- Custom designed lens adaptors/mounts

3D CAD model of fast IR camera and dual-band adapter

Spectral throughput comparison for IR camera assembly

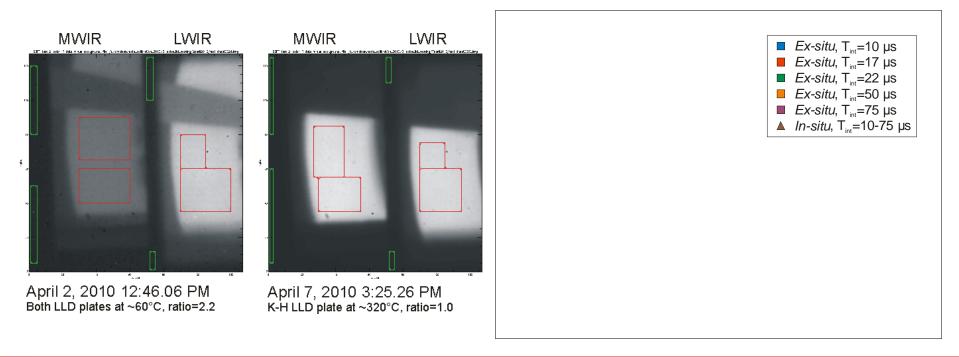

- Comparison of ideal throughput losses due to optical components in the dual-band adaptor
- Initial dual-band adaptor reduces throughput by ~4X compared to highest efficiency singleband mode
- Near-term improvements will reduce the difference to ~2X
- Significant margin is available in terms of integration time and dynamic range
 - Drop in transmission has no impact on required performance characteristics

Optical element		Wideband operation		Dual-band operation meniscus lenses		Dual-band operation DOE lenses		
		8–12 μm	3–12 µm	4–6 μm	7–10 μm	4–6 μm	7–10 μm	
		operation	operation	band	band	band	band	
Observed bandwidth		4 µm	9 µm	2 µm	3 µm	2 µm	3 µm	
Bay	' H port window	98% 83%		70%	96%	70%	96%	
Per	p. View mirror	98%						
IR primary lens		95%	75%					
Dual-band adapter	Input lens	N/A		70%	72%	95%	97%	
	Mirror 1	N/A		98%				
	Dichroic	N/A		99%	92%	99%	92%	
	Short pass filter	N/A		N/A	83%	N/A	83%	
ad	Long pass filter			95%	90%	95%	90%	
A	Mirror 2			98%				
	Output lens	N/A		70%	72%	95%	97%	
C	amera window	95%	96%	97%	97%	97%	97%	
Two-color adapter		N/A		44%	34%	82%	62%	
Over	rall transmission	87%	59%	22%	23%	41%	43%	

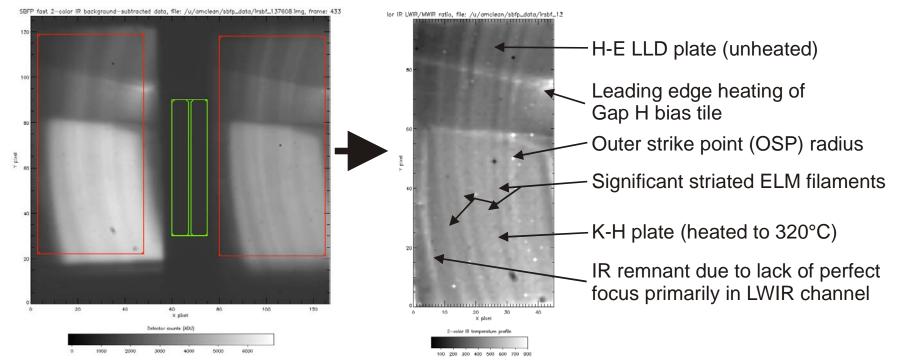


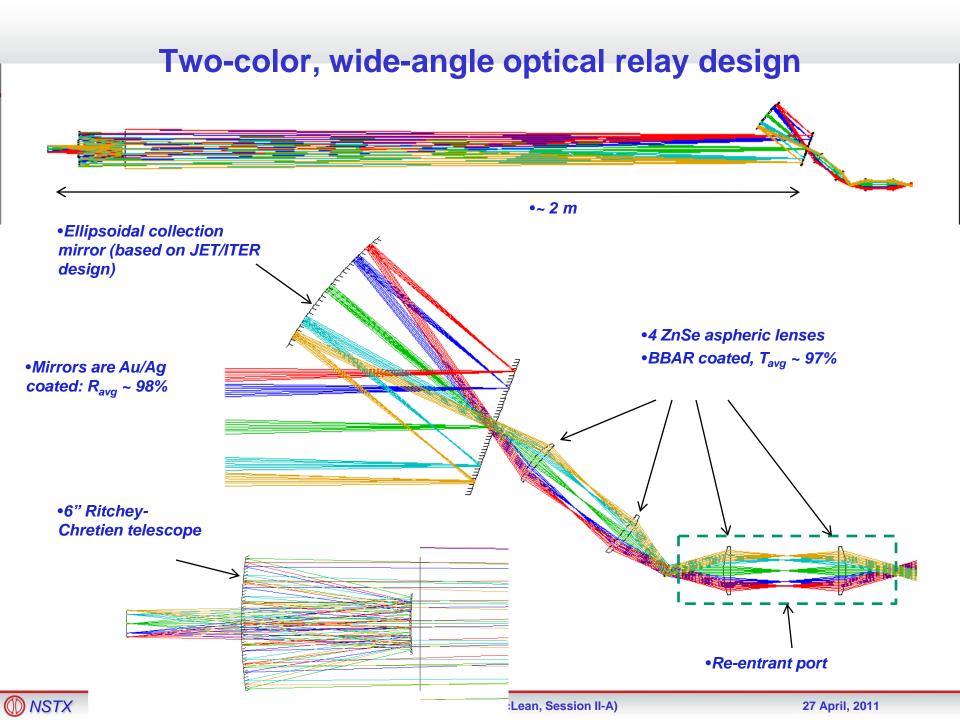
Demonstrated application of dual-band IR with extensive *ex-situ* calibration

- Accomplished with fast camera + dual-band adaptor viewing a blackbody IR source
 - Electro Optical Industries
 WS162 capable of up to 750°C
 - 400+ frames of data taken with 10-75 µs integration time at 1610 Hz frame rate (1.6-12% duty cycle)
- Useful, low error LWIR/MWIR ratio from ~100-600°C
 - Altering IR camera system gain will be explored to see if the useful range of the ratio can be extended up to ~1,000°C


SBFP 2-color intensity ratio calibration, blackbody source, 22 us integration time

In-situ calibration accomplished during heating of the LLD


- Data captured with dual-band camera viewing LLD plates at 20-320°C
 - Each LLD plate contains 20 thermocouples embedded in their copper substrate, 5 of which are in positions in the view of the fast IR camera
 - Nearly 500 frames of data taken with 10-75 µs integration time for complete comparison to *ex-situ* calibration data
 - Signal in MWIR band (4-6 µm) reduced by 35-45% due to lack of AR-coating for this spectral band on ZnSe port window, plus dust/dirt/deposits
 - Signal in LWIR band (7-10 μm) also reduced 20-25% likely due to dust/dirt/deposits
 - Overall ~20% increase in LWIR/MWIR ratio compared to ex-situ data



Dual-band IR technique demonstrated on images taken during plasma operation in NSTX with heated LLD

- Ex-situ calibration data of T vs. LWIR/MWIR ratio fitted polynomial function, then shifted for best fit to available *in-situ* data
- Data captured in ~350 shots so far, stored to NSTX data acquisition system
- Maximum 128x64 pixels on IR detector per channel (i.e., band), 1.6 kHz frame rate
- In practice, limited to ~45-55 x 100-110 pixels to prevent channel overlap, and allow adequate background for subtraction
- Data analyzed, temperature calibration applied using custom-designed IDL-based software

Conclusions

- Dual-band infrared measurement works as expected
- Dual-band system for the ORNL fast IR camera on NSTX successfully designed, built, calibrated and demonstrated
 - Patent pending
- Components <15% of the cost of new dual-band IR camera, and does not limit the full frame-rate capability to ≤300 Hz
- Significant improvements in optical transmission and reduced chromatic aberrations will take place in short term
- Will be used extensively for 1-D and 2-D heat flux measurements on LLD and lithium-coated graphite floor of NSTX
- Dual-band adaptor may be easily optimized for SWIR/MWIR, or dualcolor operation within the MWIR or LWIR bands
 - System allows interchange of beamsplitter and IR filters
 - Direct application to existing IR cameras at other fusion facilities (e.g., InSb camera with 3-4 and 4.5-5 µm colors, microbolometer camera with 8-10 and 10.5-12 µm wavelengths)

Future plans

- Mini IR source to allow alignment/focus of system at Bay H port
 - PCMCIA CameraLink card, W-filament and LED IR sources
- Broadband (BB) anti-reflection (AR) coated ZnSe window for port
 - >95% transmission from 3-11 μm would significantly improve dual-band SNR
- Optical relay
 - Makes shielding of the camera against EMF interference, and neutron/gamma radiation possible
 - Extremely challenging for broadband IR (4-10 μ m) due to chromatic aberrations
 - Investigating use of reflective optic design similar to JET/ITER design
- Stepper-motor control of Bay H mirror orientation
 - Difficult to properly aim without *in-situ* IR source (heatable tile in 2011)
- Moveable in-vessel protected mirror or IR fiber for window calibration with ex-situ IR source
 - UHV rotary feedthrough bakeable to 350°C (Lesker)
 - IR optical fiber limited to ~300°C before devitrification

