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LTX and diagnostics

close-fitting shells

designed to be heated

and coated with lithium

Impurity Diagnostics

inboard AXUV
Lyman-α &
Bolometer Array

outboard AXUV
Lyman-α Array

limiter filterscopes:
Hα, Hγ , C III, Li I

center-stack
filterscopes: Hα,
O II, visible

visible survey
spectrometer:
OceanOptics
HR4000+

LTX Achieved Parameters
Major Radius 40 cm Plasma Current 67 kA
Minor Radius 26 cm Central Density ∼8 × 1018 m−3

Toroidal Field 1.8 kG Duration 20 ms
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Evidence of radiative collapse in pre-Li discharges
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Plasma Current shot:1009031447
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Filterscope Center-Stack Emission, shot:1009031447

Visible Emis.
Hα

O II

Suggest possible impurity collapse!

Necessary to reduce impurity influx!

E. M. Granstedt Li Conditioning/Impurities LTX



Background
Lithium Campaign

Conclusions

Room-Temperature Shells
Hot Shells

Large reduction in RGA H2O peak after Li evaporation
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Room-Temperature Shells
Hot Shells

No radiative collapse with fresh, solid Li coatings
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Plasma Current Comparison

bare SS shells

fresh Li coating

significantly higher plasma
currents and longer
discharges
plasma duration generally
seems to be limited by
Vloop

lower overall impurity
emission levels
impurity emission rises
during additional fueling
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Filterscope Center-Stack Emission
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Room-Temperature Shells
Hot Shells

Relatively clean spectra in middle of discharge
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Fresh Li coating, Visible Spectra from center-stack, shot:1010141146
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spectra taken at
multiple time points
during the same
discharge
Li and C appear to
dominate fluxes
from center-stack
at end of discharge
significant increase
in impurity emission:
Li, C, N, O, metal
emission
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Room-Temperature Shells
Hot Shells

Fresh Li coating reduced total visible & O II emission
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Visible Emission over run day

before Li conditioning

14 hours after 1.2g Li

84 hours after Li evap
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1e17 OII Emission over run day

before Li conditioning

14 hours after 1.2g Li

84 hours after Li evap

18 hours after 0.7g Li

fresh solid Li surface
correlates with decreased
visible and O II emission
long-term trends
occurs even though
discharges with fresh Li
surface had higher n̄e due
to increased fueling
need better measurement
of Te,wall to quantify
oxygen flux into plasma
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Room-Temperature Shells
Hot Shells

Li coating increases C III emission!?
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1e17 CIII Emission over run day

before Li conditioning

14 hours after 1.2g Li

84 hours after Li evap

18 hours after 0.7g Li

LTX has no
carbon PFCs
C III emission
has increased
following Li
evaporation
but ... C III
emission tends to
decrease from
shot-to-shot
when operating
with a fresh Li
surface
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Room-Temperature Shells
Hot Shells

Li coating increases C III emission!?
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1e17 CIII Emission over run day

before Li conditioning

14 hours after 1.2g Li

84 hours after Li evap

18 hours after 0.7g Li

Reason for increased C III emission
remains a mystery

LTX has no
carbon PFCs
C III emission
has increased
following Li
evaporation
but ... C III
emission tends to
decrease from
shot-to-shot
when operating
with a fresh Li
surface
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Room-Temperature Shells
Hot Shells

Hot shells increase Neutral Li Flux ∼ 10×
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LiI Emission over run day

∼ 4 hours after Li evap, cold shells

∼ 3 hours after Li evap, hot shells

∼ 20 hours after Li evap, cold shells

300 ◦C Li evaporation rate
∼ 4 × 1018/m2-s [Moir]

physical sputtering and
evaporation can source
lithium into the plasma

about 2/3 of sputtered
lithium is Li 1+

insensitivity of Li (610 nm)
S/XB coefficient to ne, Te
allows determination of
neutral Li flux:

ΓLi0+ = 4πσS/XB
LiI ILiI

10X higher Li flux into
plasma when operating
with hot shells
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Room-Temperature Shells
Hot Shells

Hot shells increase neutral Li flux more than H flux
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∼ 4 hours after Li evap, cold shells

∼ 3 hours after Li evap, hot shells
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relative insensitivity
of S/XB coefficients
allow an idea of
relative Li/Hydrogen
fluxes:

ΓLi0+

ΓH
=

σ
S/XB
LiI ILiI

σ
S/XB
Hα

IHα

neutral Li influx
increases more than
hydrogen recycling
rate for hot shells
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Conclusions

fresh Li plasma-facing surfaces may contribute to improved
plasma performance by reducing impurity wall sources
(oxygen, metals?) lowering overall plasma impurity content
neutral Li flux into plasma is ∼ 10× higher when operating
with hot shells, and substantially higher than the estimate
from the known Li evaporation rate
the reason for increased carbon emission following Li
conditioning remains unknown
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Future Work

install upgraded AXUV diode array to simultaneously
measure Lyman-α and Prad , and determine effect of Li
conditioning on Prad

bring XUV spectrometer on-line to measure impurity
emission from the core
add filterscope channels:

measure multiple Li I lines to constrain Te, ne near wall
measure Li II emission to quantify ionized Li influx
measure C II emission to better quantify carbon fluxes by
measuring emission that is more wall-localized

determine hydrogen recycling and impurity yields by using
edge modeling codes and Langmuir probe measurements
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