

Effect of Lithium Wall Conditioning on Impurities in LTX

Erik M. Granstedt, R. Kaita, R. Majeski, (PPPL) T. Gray, R. Maingi, A. McLean (ORNL) and the LTX team

Princeton Plasma Physics Laboratory, Princeton, NJ

2nd International Symposium on Lithium Applications for Fusion Devices

LTX and diagnostics

close-fitting shells designed to be heated and coated with lithium

Evidence of radiative collapse in pre-Li discharges

Suggest possible impurity collapse! Necessary to reduce impurity influx!

Room-Temperature Shells Hot Shells

Large reduction in RGA H₂O peak after Li evaporation

Room-Temperature Shells Hot Shells

No radiative collapse with fresh, solid Li coatings

- significantly higher plasma currents and longer discharges
- plasma duration generally seems to be limited by V_{loop}
- lower overall impurity emission levels
- impurity emission rises during additional fueling

E. M. Granstedt Li C

Room-Temperature Shells Hot Shells

Relatively clean spectra in middle of discharge

- spectra taken at multiple time points during the same discharge
- Li and C appear to dominate fluxes from center-stack
 - at end of discharge significant increase in impurity emission: Li, C, N, O, metal emission

Room-Temperature Shells Hot Shells

Fresh Li coating reduced total visible & O II emission

- fresh solid Li surface correlates with decreased visible and O II emission long-term trends
- occurs even though discharges with fresh Li surface had higher n
 e due to increased fueling
- need better measurement of *T_{e,wall}* to quantify oxygen flux into plasma

Room-Temperature Shells Hot Shells

Li coating increases C III emission!?

- LTX has no carbon PFCs
- C III emission has increased following Li evaporation
- but ... C III emission tends to decrease from shot-to-shot when operating with a fresh Li surface

Room-Temperature Shells Hot Shells

Li coating increases C III emission!?

Reason for increased C III emission remains a mystery

- LTX has no carbon PFCs
- C III emission has increased following Li evaporation
- but ... C III emission tends to decrease from shot-to-shot when operating with a fresh Li surface

Room-Temperature Shells Hot Shells

Hot shells increase Neutral Li Flux $\sim 10 \times$

• 300 $^{\circ}\mathrm{C}$ Li evaporation rate $\sim 4 \times 10^{18}/m^2\text{-s}$ [Moir]

- physical sputtering and evaporation can source lithium into the plasma
 - about 2/3 of sputtered lithium is Li 1+
- insensitivity of Li (610 nm) S/XB coefficient to n_e, T_e allows determination of neutral Li flux:

$$\Gamma_{\mathrm{Li}^{0+}} = 4\pi \sigma_{\mathrm{LiI}}^{\mathcal{S}/\mathcal{XB}} I_{\mathrm{LiI}}$$

 10X higher Li flux into plasma when operating with hot shells

Room-Temperature Shells Hot Shells

Hot shells increase neutral Li flux more than H flux

 relative insensitivity of S/XB coefficients allow an idea of relative Li/Hydrogen fluxes:

$$\frac{\Gamma_{\mathrm{Li}^{0+}}}{\Gamma_{\mathrm{H}}} = \frac{\sigma_{\mathrm{LiI}}^{S/XB} I_{\mathrm{LiI}}}{\sigma_{\mathrm{H}_{\alpha}}^{S/XB} I_{\mathrm{H}_{\alpha}}}$$

 neutral Li influx increases more than hydrogen recycling rate for hot shells

Conclusions

Background Lithium Campaign Conclusions

- fresh Li plasma-facing surfaces may contribute to improved plasma performance by reducing impurity wall sources (oxygen, metals?) lowering overall plasma impurity content
- neutral Li flux into plasma is $\sim 10 \times$ higher when operating with hot shells, and substantially higher than the estimate from the known Li evaporation rate
- the reason for increased carbon emission following Li conditioning remains unknown

Future Work

- install upgraded AXUV diode array to simultaneously measure Lyman-α and P_{rad}, and determine effect of Li conditioning on P_{rad}
- bring XUV spectrometer on-line to measure impurity emission from the core
- add filterscope channels:
 - measure multiple Li I lines to constrain T_e , n_e near wall
 - measure Li II emission to quantify ionized Li influx
 - measure C II emission to better quantify carbon fluxes by measuring emission that is more wall-localized
- determine hydrogen recycling and impurity yields by using edge modeling codes and Langmuir probe measurements

Acknowledgments

Special thanks to all the other LTX team members as well as Vlad Soukhanovskii (LLNL) for useful discussions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0646086. LTX is supported by US DOE contract DE-AC02-09CH11466.

Talk available at http://princeton.edu/~erikg/