Fueling of LTX Plasmas with Lithium Plasma Facing Components

D.P. Lundberg, R. Kaita, R. Majeski and the LTX team

Princeton Plasma Physics Laboratory, Princeton, NJ

2nd International Symposium on Lithium Applications for Fusion Devices

Supported by US DOE contract # DE-AC02-09CH11466

Outline

- Effects of lithium coatings on the fueling of LTX plasmas
- Results from the first LTX lithium campaign
 - Vessel neutral pressure (fast ion gauge)
 - Spectroscopy (Ly_{α} array)
- Future plans: fueling with Molecular Cluster Injection

Lithium Tokamak eXperiment (LTX)

High recycling walls

Large cold wall particle source with poor fueling efficiency.

External fueling a small fraction of total.

Fueling rate and profile are uncontrolled.

Low recycling walls

Eliminates low-efficiency edge source.

Almost any replacement source has higher fueling efficiency than wall (even puffer) and can be turned off

Ideal case is to replace recycled flux with core fueling \rightarrow control of profile

So with lithium PFC's, we expect...

- Total external fueling requirements to increase
- Evidence of particles absorbed in lithium
 (H⁺ ions/ H_o atoms are pumped by lithium)
- With reduced recycling, edge neutral densities should decrease
 - Neutral emission should be reduced

Wall condition strongly influences neutral pressure measurements

Bare SS walls

Final neutral pressure actually **increases** after the discharge

- Plasma is liberating material from the wall (R>1)

Fresh lithium

Requires factor of 10 increase in pre-fill pressure to avoid runaway electron formation Neutral pressure drops after discharge (R<1)

Passivated lithium

Fueling requirements and wall source similar to bare SS case

How many particles is the lithium pumping during a discharge?

H₂ molecules are not pumped by lithium. Difference between "gas only" and "plasma" cases equals amount of H⁺ and H_o and absorbed in Li during discharge

Lithium traps ~6-7x10¹⁹ particles in ~15ms - 2/3 of the total number of particles injected by the fueling systems

This is **not** the same as R=0.33 (we do not know how many times particles hit the Li wall before sticking)

But clearly R<1

Spectroscopic Measurements Indicate Reduced Edge Neutral Emission With Lithium Coatings

(Credit to E. Granstedt for development of the Ly_{α} array)

What about the other 1/3 of the particles?

- Not all surfaces are uniformly coated with lithium
 - Gaps in shell, center-stack, etc...
- Particles left over from pre-fill puff
 - Plasma volume is ~1/2 of total vessel
 - Diffuse pre-fill unnecessarily raises the edge neutral density
- Gas puffer has poor fueling efficiency
 - Would like to replace the puffer with directed fueling
 - Minimize stray edge gas
 - Have already reached puffer's maximum fueling rate

Molecular Cluster Injector – a fueling system that creates a collimated, high-density particle source

- Cryogenically cooled solenoid valve and supersonic nozzle
 - Cold molecules condense into clusters of a few hundred molecules each
 - Low temperatures, high pressures increase cluster size and number
- Clusters expected to penetrate further into plasma than gas-phase molecules
 - Previous results on HL-2A gave some promising indications of this
- Unknown if dominant factor is size of the clusters or total molecular density
 - Cluster size and molecular density are generally correlated ightarrow need careful experiments
 - Large clusters as "micro-pellets" versus shielding of inner neutrals in high-density jet

Cluster injector has been optimized for high-density fueling of LTX plasmas

- Improved nozzle design
 - Increased central density by an order of magnitude
- Produces neutral densities of 10¹⁵⁻¹⁶ cm⁻³ far from the nozzle
 - 1000 X LTX plasma density(strong perturbation to plasma)
- Measured high flow rates
 >5x10²² particles/s (@250 psi)
 - Rates >1x10²³ particles/s should be possible (valve rated to 1250 psi)

Future Plans

- Optimize performance of cluster injector on LTX
 - Maximize fueling efficiency / percentage of core fueling
 - Does this depend on cluster size or just molecular density in the jet?
 - If successful, this fueling system should be of interest to the broader fusion community
 - Cheaper and less complicated than pellet injection
 - High fueling rates available
- Use the cluster injector as a tool to study plasma density profiles with low-recycling walls
 - How does the density profile evolve differently with:
 - Edge fueling?
 - Core fueling?
 - The absence of external fueling?
 - Can we strongly affect the electron density profile via fueling?