Electrical characteristics of lithium surfaces exposed to a plasma

A.B. Martín-Rojo, E. Oyarzabal, J.A Ferreira and F. L. Tabarés As. EURATOM/CIEMAT, Madrid Spain

MOTIVATION

Lithium coating of TJ-II (Heliac type stellerator)

•The coating technique is based on vacuum vaporisation of solid lithium (4 gr each conditioning cycle) from effusive sources at temperatures of 500-600°C

•The presence of an underlying boron coating deposited previous to the lithiation, crucially affected the lifetime of the Li layer.

Effect of lithium in the TJ-II operation

•Substantial improvement of the main plasma parameters, particle and energy confinement

•Control of the density ramp in NBI plasmas (not achieved with boronized walls).

•Extension of the TJ-II operational window.

•Achievement of H-mode

MOTIVATION

Experiments in TJ-II

The sputtering and desorption characteristics of H and He plasmas on a Li surface

Hydrogen plasma

Sputtering yield < TRIM calculation Eth > TRIM calculation

Helium plasmas

Eth Sputtering Li ~ Eth H desorption Same energy dependence

Both species, Li and H could obey to the same release mechanism

MOTIVATION

Experiments in laboratory are necessary:

-Check of the Li sputtering in presence of H

-Study of factors that affects the process: role of B

And

To find new positive effects of lithium surfaces other than low recycling

Tritium control in fusion reactors calls for a high recycling scenario

In order to figure out the influence of the surface condition in the sputtering, three surface coatings had been studied in the laboratory experiments:

- -Li coating
- -Li and H coating
- -Li and B coating

SETUP

Li + H COATING

2. Cleaning of the chamber: \longrightarrow Monitoring of H α signal

-He plasma

-High potentials in the bar

Li + B COATING

Ortocarborane sublimation —→ Monitoring of the pressure Break of the molecule: He plasma

Laboratorio

Nacional

Fusión

Li COATING

Sputtering Yield

Coating	Li	Li + H	Li + B	Fit (Bohdanskv)
Eth (eV)	20	30	45	$Y = QSn(E) \left(1 - \frac{E_{th}}{E}\right)^2 \left(1 - \left(\frac{E_{th}}{E}\right)^{2/3}\right)$
Sputtering /ield (max)	92	56	46	

LI COATING

The 2nd International Symposium on Lithium Applications for Fusion Devices April, 2011 Princeton, New Jersey, USA

Laboratorio Nacional Fusión

Ciemat

Centro de Investigaciones Energéticas, Medioambientale y Tecnológicas

GOBIERNO DE ESPAÑA E INNOVACIÓN

Li and Li – H COATING

GOBIERNO DE ESPAÑA E INNOVACIÓN V Tecnológias

Secondary electron emission ? Additional ion current?

This phenomenon appears to be related to the sputtering:

-starts at energies near of Eth

-the values are higher for conditions with higher sputtering yield No conventional secondary emission of electrons:

•Li electron secondary emission coefficient= 0,5 (upper limit for ion induced electron emission)

•Here maximum ~ 1,5

•Conventional secondary_electron emission peaks at higher energies

•Anomalous negative current is detected at slightly negative bias on lithium and lithium-hydrogen surface

•Not detected under boronized-Li conditions

•Energy dependence showing threshold and yield characteristics of sputtering

•Could be associated to plasma ionization of sputtered (excited) neutrals