An Electrostatic Lithium Injector (ELiI) First Results

¹Daniel Andruczyk, ¹Peter Fiflis, ¹David Ruzic and ²Dennis Mansfield

¹Center for Plasma-Material Interactions, University of Illinois, Urbana-Champaign IL, USA

²Princeton Plasma Physics Labs, Princeton NJ, USA

Nuclear, Plasma, and Radiological Engineering Center for Plasma-Material Interactions

Contact: andruczy@illinois.edu

Outline

- 1. Motivation
- 2. Theory
 - Droplet Formation and q/m Ratio
 - Trajectory
 - Summary
- 3. Results
 - Modelling
 - ELiI Prototype
 - ✤ Video
 - Spray
 - * Biasing
 - Summary
 - Droplets
- 4. Conclusions and Future Work

1. Motivation

- Li has shown some excellent properties as a PFC material
 - Hydrogen getter
 - Improved Performance
 - Suppresses ELMs
 - Reduces damage on surfaces that have been coated with lithium
- NSTX and LTX currently active machines that uses lithium as a PFC material
 - Currently deposited using LITER
- However the center stack is one area of NSTX that is not reached by LITER
 - LITER line of sight
 - Center-stack is thin, small target that cannot be uniformly coated
 - Center-stack can be biased up to 2500 V
- Discussions with Dennis Mansfield
 - Can a charged spray of lithium be produced?
 - Biasing of components can target them to be coated with lithium

2. Theory – Droplet Formation

- Will a droplet form and what will be its initial velocity?
- Consider a tube which has a liquid with surface tension, γ
 - The system will be in an equilibrium when the pressure due to γ , $P(\gamma)$ and the backing pressure, P_0 , are equal.

$$\Delta P = P(\gamma) - P_0$$
$$\Delta P = \frac{2\gamma}{r_1} - P_0$$

- When $\Delta P = 0$, then $P_0 = 2\gamma/r_1$, which for lithium is about 147 Pa in this instance (1/2" tube).
- If P_0 exceeds $P(\gamma)$ then the liquid will be forced through the hole at some velocity, v, given by [1]

$$v^2 = \frac{2P_0}{\rho \left(\frac{A}{a} - 1\right)^2}$$

 where, A, is the larger Surface area and, a, is the surface area of the hole the Lithium is being forced through, ρ, is the density of liquid Li.

Droplet Formation and q/m Ratio

- As a droplet is charged, it will charge to the Rayleigh limit.
 - A droplet tends to have a spherical shape because of its surface tension.
 - As it charges up the repulsion between the ions may over come the surface tension.
 - This will lead to a break up of the droplet into smaller ones.
- These two disruptive effects are equal at a characteristic droplet radius, R [2]

$$R = \frac{4\gamma}{\left(\varepsilon_0 E^2\right)}$$

- where, E, is the maximum surface electric field
- The maximum specific charge as a function of radius is given by [3]

$$Q = \frac{6(\varepsilon_0 \gamma)^{1/2}}{\rho R^{3/2}}$$

- This is for the parent droplet, where Q is the charge on the droplet.
- As this is overcome, the parent droplet will break up into smaller daughter droplets so as to conserve charge and volume.

Droplet Formation and q/m Ratio

• The number of droplets, *N*, that will break up from the parent drop is

$$N = \left(\frac{R}{r}\right)^3$$

- where, *r*, is the radius of the daughter droplets.
- Thus for a system where the parent drop has a radius of R = 1 mm and the daughter droplets are 0.2 mm, there would be 125 droplets produced.
- Therefore the charge to mass ratio, β , with respect to droplet radius is

$$\beta = \frac{6(\varepsilon_0 \gamma)^{1/2}}{m\rho r^{3/2}}$$

• Where, *m*, is the mass of a droplet.

Trajectory

- By biasing the center-stack on NSTX the particles will be attracted to it.
 - Between shots or before running
- Coat the surface of the center-stack by varying the bias or by changing the pressure in the dropper.
- Basic kinematics should be able to predict the path the particles will take uter and whether the center stack can be Vessel reached.

• Solving for
$$F = mg$$
 and $F = qE = qV/d$

$$x = \frac{1}{2} \frac{qEt^2}{m} - v_0 t$$
$$z = z_0 - \frac{1}{2} gt^2 - v_0 t$$

• where $z_0 = h$, the height.

Summary

Parameter	Symbol	Ranges	Typical Value	Units
ELiI cross section	A	3×10 ⁻⁵ < <i>A</i> <2×10 ⁻³	6.7×10 ⁻⁵	m^2
Orifice cross section	a	$2 \times 10^{-5} < a < 4 \times 10^{-6}$	3.2×10 ⁻⁶	m^2
Radius of parent	R	$500 \times 10^{-6} < R < 2 \times 10^{-3}$	1×10 ⁻³	m
Radius of daughter	r	$1 \times 10^{-6} < r < 200 \times 10^{-6}$	100×10 ⁻⁶	m
Surface Tension	γ	$0.2 < \gamma < 0.4$ [5]	0.32 (@250 °C) [4]	N/m
Pressure	P_{0}	$150 < P_{\theta} < 350 \times 10^3$	40×10 ³	Pa
Density	ρ	-	512 (liquid)	Kg/m ³
Initial velocity	v	0 < v < 2	0.6	m/s

http://cpmi.uiuc.edu

Center for Plasma-Material Interactions

 $x = \frac{1}{2} \frac{qEt^2}{m} - v_0 t$ $z = z_0 - \frac{1}{2}gt^2 - v_0t$

3. Results – Modeling Trajectory

- Using the typical values in the previous slide an estimate of the path a droplet will take can be made.
- For a 1/2" tube with a 0.08" orifice
 - v = 0.6 m/s
 - A parent droplet with a diameter of 2 mm will charge up to 311.96 μC
 - If the daughter droplets are 200 µm in diameter then there will be N = 1000 droplets
- Bias voltage on the center-stack:
 - V = 40 V
 - E-field $\rightarrow E_{bias} = 38.6 \text{ V/m}$
- Results show that this will be the lower limit of where the droplets will go.
 - By sweeping the bias voltage on the centerstack, it can be "*Painted*" by ELiI

Modeling Trajectory

- If the results from the previous slide are superimposed onto a cross section of NSTX
 - See that the voltage sweep from 40 V 2500 V is enough to "Paint" the center-stack.
 - v = 60 cm/s in this example
- The minimum voltage bias needed on the center-stack is $\frac{Outer}{Vacuum}$ only $V_{min} = 38$ V
 - Lower voltages will cover the divertor.
 - Potential to be able to cover a large array of surfaces.
- ELiI shows great potential as a Support Leg complimentary tool for LITER

http://cpmi.uiuc.edu

Center for Plasma-Material Interactions

10

ELil Prototype

- ELiI Prototype specifications
 - 0.5 inch tube used
 - Heating wire wrapped around tube
 - Isolated with kapton tape
 - Thermocouple is used to measure the temperatures
 - An orifice made from SS shim is spot welded onto the end of the tube
- Ceramic rods
 - Used to keep away from heating coils
 - Provide a spacer for the distance from the biased tube
- Voltage of up to $V = 2000 \, \text{V}$ can be provided

Center for Plasma-Material Interactions

http://cpmi.uiuc.edu

ELiI Prototype

Video of ELiI

Spray

Biasing of the plates

Summary – EliI & Spray

- Proof of concept experiments:
 - As the voltage is increased
 - * droplets seem to decrease.
 - As droplet charges up, breaks up and a spray develops.
 - Voltage switched off:
 - * Droplet size grew and no spray observed.
 - Biasing of the plates shows that the droplets are attracted to the -ve side
 - * More evidence for charging

• Modeling:

- Biasing of target PFC can effectively "Paint" them.
 - * NSTX center-stack biased up to V=2.5 kV, can easily be covered by ELiI
- Conclusions of initial results:
 - Electrostatic Lithium Injector is a very real possibility as a way to cover a fusion machines PFC with lithium.

Center for Plasma-Material Interactions

Droplets

• Parameters:

- Li temperature $T_{Li} \approx 220 \text{ °C}$
- Backing pressure $P_o = 3.5$ atm
- Initial velocity measured $v \approx 60$ cm/s
- The particles that sprayed out collected on the wall and plates.
- The particles were quite small:
 - $D \approx 50 \ \mu m$ -1000 $\ \mu m$

Above: Lithium particles that have deposited on the wall of vacuum vessel.

Left: Some examples of the sprayed particles from ELiI.

4. Conclusion and Future Work

- An Electrostatic Lithium Injector has started to be developed
 - Based on the Electro-Spray Concept
 - Envisaged to be used to cover the center-stack of NSTX
- Initial modeling shows that the concept can indeed work within the parameters of NSTX biasing and design of ELiI
 - Sweeping Voltage can **"Paint"** the center Stack
- Initial results show that a droplet and spray can be produced.
 - A spray is initiated as it passes through a ring that is grounded w.r.t. the tube
 - Droplet formation could also produce a powder of lithium
- Future work
 - Produce a more robust design

Center for Plasma-Material Interactions

- Base the orifice on an optimized Taylor Cone
- Biasing of components to show the spray is being deflected by an E-field

References

M. Nieto-Perez, *PhD Thesis*, Uni. Illinois, (2004).
 A. J. Kelly, *J. Aerosol Science*, Vol. 25, No 6, pp 1159-1177, 1994.
 R. Pfeifer & C. Hendricks, *Phys. Of Fluids*, Vol. 10, No 10, 2149-2154, 1967.

http://cpmi.uiuc.edu

4. M. Jaworski, PhD Thesis, Uni. Illinios, (2010).
5. K. A. Yakimovich & A. G. Mozgovoi, *High Temperature*, Vol. 38, No. 4, pp 657-659, 2000

