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High level introduction to neoclassical impurity transport
Introduction to XGCO kinetic transport code

 What is seen in the H-mode experiment?

Drop of carbon density at L-H transition: probably a transient (ion-
scale) turbulence/neoclassical phenomenon (future topic for the
XGC1 edge gyrokinetic turbulence code)

Li appears to come in only in the early stage, following L-H
transition

Then, the Li penetration through the pedestal and into the core
are blocked.

Reduction of C and Li in a thin layer toward separatrix
Reduction of P, with Li, with Broadening of n, pedestal
And others

 Relevance of Neoclassical Physics to Edge: validation
« What does XGCO say?
« Discussion and conclusion



Executive description of neoclassical
Impurity transport theory

Ly=-Z5 [Ays <0In pfor —(Z,/Zg) dln pglor>+ B 5 dln T/or]
Diffusive, normally from random pitch angle scattering

« If the main ion species a is in banana regime, B ; can be <0 -
“temperature gradient screening” of impurity influx

* How do we make a guess of the radial impurity transport direction?

« Lighter ion species see the heavier species more as a pitch angle
scattering background - normal random walk diffusion-> diffuses
downward in pressure gradient - radially outward transport

* Heavier ion species see the lighter species more as a friction
source = momentum conservation in the collision with lighter
species dominate the transport direction = radially inward
transport

— M, (12, Z=6) >M_; (6, Z=3)>Mj
— My, (20, Z=10) >M, (20, Z=6) >M,



XGCO: Kinetic transport modeling code

Full-f Particle-in-cell in 3D perturbed magnetic field (RMP, ripple)
Realistic geometry from geqdsk data (wall and separatrix included)
3D (in r-space) + 2D (in v-space) ion and electron Lagrangian
dynamics with self-consistent 1D E, evolution

Electrostatic potential @ is assumed to be a flux function

Logical sheath at diverter plates (J, + J;, =0 out of a flux tube)

D/H Neutral Monte Carlo particles with a wall recycling coefficient

Conserving Monte-Carlo Coulomb and neutral collisions (ionization
and charge exchange)

DEGAS2 is coupled-in (Stotler)
Multiple ion species with Hirshman collision operator
Heat and momentum fluxes from core

Implementation of anomalous transport modeling: random walk and
convection. Independent control of the ambipolar particle and the
heat transport on each species

XGC-RF contains rf operator

More self-consistent anomalous transport is to be imported from
XGC1.
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IMPURITY CONCENTRATION (%)

Reduction of C and Li ina .
thin layer toward separatrix ;

10.00 F 130723 130724 130725

New Lithium Density Measurements in H-mode
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Is neoclassical physics relevant to edge physics: validation?

05|

. 0 mg Li: «=1.6
150 mg Li: a=1.1
300 mg Li: o=0.4

mid . (_...————‘
Agmid =~ 1=

*Joint Research Target (3 U.S. Facilities)
» Divertor heat flux width decreases with
increased plasma current I

— Potentially major implications for ITER
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Predictive validation of
neoclassical physics from XGCO
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Kinetic neoclassical impurity transport simulation

— Anomalous transport is off - Purely Neoclassical

— Simulation domain: y,=0.4 to wall in realistic g_eqgdsk magnetic field
geometry (g124439.00497)

— 5 species: D', e, DY, C*6, Li*3or Net10

— Recycling rate for C*¢ and Li*3 or Ne*10 are independently controlled
relative to D* (simplified model)

— Large initial C*® density (10% uniform in space) and small Li or Ne
density (1/2 or 1/33 of nc, uniform): basic “physics” study, not a
discharge “simulation”

— Initial temperatures are assumed to be equal between species.

— Self-consistent E, and V, with the impurity and edge effects (wall, X-
point, neutral, pedestal, etc)

— Radial transport speeds are calculated while the initial profiles are
being evolved consistently with E, and V.



New Lithium Density Measurements in H-mode
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XGCO says, at n~/n_.=10%, LI moves outward
while C** moves in at y,<1.

Radial transport speed profiles
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New Lithium Density Measurements in H-mode

IMPURITY CONCENTRATION (%)
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Carbon increases with Li evaporation

— Cinflux rate across pedestal is high
— C accumulation in core

* Li screening at later time, but not earlier
* P 4 goes down with Li

Li influx rate across the pedestal is low

“No sign
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At 5% n./n_, LI moves inward at much
slower speed than C.

Radial transport speed profiles
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Validation with Ne

Ne has opposite property to Li against C.

Will Ne show opposite behavior to Li in the same
situation?

Will C show different behavior by Ne?
Expectation from neoclassical physics:

* Inward transport speed of C will be reduced.
— C will collide against D = inward flux

— C will scatter against Ne - outward fluX
* Ne will collide against D and C and move inward



XGCO says Neon ions move inward together
with the carbons, but C influx is at slower
speed than the Lithium case;
n:/N_.=10% Is used.

%adial transport speed profiles

30 T T T T T ] T
Main ion
Carbon -----
Ne -—%---
20 -
o x|
U v
i
£ 10 EE
il % ¥
o ;
7] ;
= .
a x % F
@ PRk i : i
c B b ev) * ;
E - *—*.*'*‘-'fx'xx ﬁH-x-x.x_x_% " #*
#*# % . T’{')('K'K-¥:K ¥ 3 ﬁ_x_x %%ﬁ(.x " g *
**-‘k -x.}{-ﬂ*-}(xx *- K ;
* * #* Frx 2 o¥
$ ¥ ' ** * iifx x>
- — . * F: . a
10 * ¥ ¥ * # +¥+ # % ¥
* *
x* ¥
20 | L | | | |
0.4 0.5 0.6 0.7 0.2 0.9 1

Normalized poloidal flux



Outline

 |ntroduction

High level introduction to neoclassical impurity transport
Introduction to XGCO kinetic transport code

 What is seen in the H-mode experiment?

Drop of carbon density at L-H transition: probably a transient (ion-
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are blocked.
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IMPURITY CONCENTRATION (%)
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More realistic impurity profile simulation is needed for quantitative comparison.



The n. dip is caused by Carbon screening in the scrape-off layer

flux
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r(V/m)

E_

Carbon depletion strengthens ExB shearing
E -well depth/width at n./n_.=5% is stronger than at 10%

Weaker X-loss effect by C in pedestal
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Conjecture: Reduction of P__, with abundance of Li in the scrape-off layer:
— Reduction in C*% in the pedestal by high Li population in the scrape-off layer

— Momentum conservation is not a constraint in scrape-off: Collisional transport
yields I'->0 just outside separatrix. = higher C collisionality by abundant Li,
- higher I'>0 just outside separatrix > more C depletion in pedestal >
Increased ExB shearing rate.in pedestal



Conclusion and Discussion

haviors ar
, could be
physics

— Blockage of Li influx, except in the early low-carbon stage, following
the L-H transition

— Enhanced flux of ionized C into core throughout H-discharge period
— Reduction of C and Li in a thin layer toward separatrix

— Lower P, with Li evaporation

— Broadening n_ pedestal

« The initial large drop of C into hollow profile appears to be outside of
neoclassical physics: A transient turbulence-neoclassical effect is
suspected

- to be investigated from XGC1 gyrokinetic edge turbulence-neoclassical
code

« A more realistic plasma “simulation,” as opposed to the “academic”
study, is needed and in progress (part of PhD thesis, K.H. Kim)

« Divertor heat load scaling with Li is to be studied. ADAS data to be
used, in collaboration with the Auburn group.



