

Incremental upgrades toward high-heat flux, liquid lithium PFCs in the NSTX-U*

MA Jaworski¹, P Rindt², K Tresemer¹, A Brooks¹, S Gerhardt¹, TK Gray³, R Kaita¹, N Lopes-Cardozo², J Menard¹, M Ono¹, CH Skinner¹

¹Princeton Plasma Physics Laboratory ²TU/Eindhoven ³Oak Ridge National Laboratory

4th International Symposium on Lithium Applications in Fusion Devices

Granada, Spain, September 29, 2015

*Work supported by DOE contract DE-AC02-09CH11466

Outline

- What is a possible upgrade path to flowing liquidmetal PFCs in NSTX-U?
- How does the NSTX-U High-Z Divertor Upgrade 1 project inform liquid metal PFC development?
- What is the current concept for pre-filled, liquid metal PFCs for NSTX-U?

NSTX-U plasma-facing components (PFCs) will be subjected to significant heat and particle fluxes

- NSTX-U is the newest US machine
 - 2x NBI heating power (<13MW)
 - 2x current (<2MA) and field (<1T)</p>
 - 5x pulse length (<5s)
- Experimental capabilities push toward DEMOrelevance
- Open divertor provides unique opportunities for experiments

2nd NBI system

Upgraded OH and toroidal fields

	R_0	$P_{SOL}(P_{AUX})$	P/R	P/S	τ_{pulse}
Machine	[m]	[MW]	[MW/m]	$[\mathrm{MW}/\mathrm{m}^2]$	$[\mathbf{s}]$
$NSTX^*$	0.86	6.8	8	0.2	1
$NSTX-U^*$	0.93	19	21	0.6	5
JET^\dagger	2.95	12(35)	4.1(12)	0.03(0.2)	20
$DIII-D^{\dagger}$	1.74	5(20)	2.9(11)	0.1(0.4)	6
AUG^{\dagger}	1.65	5(27)	3(16)	0.1(0.6)	10
CMOD^{\dagger}	0.7	3(6)	4(9)	0.4(0.7)	2
$MAST^{\dagger}$	0.87	5(7.5)	6(9)	0.2(0.25)	1
ITER^\dagger	6.2	100	16	0.15	400
${f ST}{f -}{f Pilot}^{\ddagger}$	2.2	190	86	0.7	6×10^6
\mathbf{ST} - \mathbf{DEMO}^{\ddagger}	3.2	520	161	0.9	∞

Liquid metal PFCs provide additional pathways for energy transport

 Conventional, solid PFCs utilize extrinsic impurities to enhance radiation

Liquid metal PFCs provide additional pathways for energy transport

- Conventional, solid PFCs utilize extrinsic impurities to enhance radiation
- High-power density on slow-flow lithium leads to vapor-shielded targets for extreme heat flux mitigation
- Fast-flow concepts can exhaust extreme amounts of power via convection but are less mature

Ultimate temperature limit of liquid lithium surface has large impact on power extraction potential

Vapor-box concept – Goldston et al., PFMC 2015, Phys. Scripta submitted

- Vapor-box utilizes neutral gas to redistribute incident heat
- Fast-flow concept can also benefit from increased surface temperature
- Hydrogen pumping limited to <400C

Recent results suggest higher temperatures are possible

T. Abrams 2014 PhD Princeton U. & Suppressed erosion T. Abrams 2015 Nucl. Fusion submitted. under high-flux D 10 bombardment observed Adatom-evaporation Near-surface trapping of model, $\beta=0$ Adatom-evaporationlithium resulting in long Atomic Li erosion yield (atoms/ion) model, 500 µm Li Adatom-evaporation model, 25 µm Li Li-I emission, t=2.5s 0.1 Li Trapping **Neutral Li** Experimental Data, emission 20 eV D→Li 0.01 Target Plasma (a) Neutral D 0.001 emission 10 mm 100 200 300 400 500 600 700 Li Temperature (°C)

Jaworski, 3rd ISLA, 2013

NSTX-U long-term objective is to perform comparative assessment of high-Z and liquid lithium PFCs

- Conversion to all-metal PFCs enables study of the role of PFCs on integrated scenarios
- Flexible divertor configurations allows exploration of novel PFCs and advanced magnetic configurations
- Addition of cryo-pump allows comparative assessment of cryo- vs. Li-based hydrogenic control

Required elements for complex projects...

Jaworski – Incremental upgrades for LM-PFCs in NSTX-U – 4th ISLA – Granada, Spain 2015

Required elements for flowing, liquid metal PFCs

NSTX-U

Jaworski – Incremental upgrades for LM-PFCs in NSTX-U – 4th ISLA – Granada, Spain 2015

A three-step progression can achieve flowing, liquid metal PFCs

- 1. High-Z divertor tiles
 - Heat-flux handling
 - Substrate and structural (thermomechanical)
- 2. Pre-filled liquid-metal target
 - Builds from high-Z divertor tile design
 - Demonstrates liquid-metal wetting/reservoir
- 3. Flowing LM PFC
 - Integrates liquid lithium loop
 - Safety engineering updates

High-Z incremental upgrade will provide design and engineering assessments

- Replace continuous row of graphite tiles with high-Z
- Provide operational experience and validate engineering design and analysis with an eye to future upgrades
- Continue experiments on evaporated Li films on high-Z substrate in diverted configuration
- Refine high-Z, high-heat flux design criteria for NSTX-U

Replacement of outboard row of tiles provides significant heat-flux and maintains operational flexibility

- Shape developed to perform dedicated tests on outboard PFCs
 - ISOLVER free-boundary solver utilized with specified β_N
 - 0D analysis obtains heating power consistent with shape and requested β_{N}
- Heat flux figure-of-merit (FOM) indicates significant power density on target tiles
 - FOM calculates incident power accounting for magnetic shaping only
 - High-Z shape FOM is 66% of fullpower, high-triangularity scenario

Rapid experiments facilitated by direct replacement of graphite tiles

- Machine installation time minimized with 1-for-1 replacement
- Surface castellations relieve thermo-mechanical stresses
- TZM-alloy provides high-Z, Li-compatible substrate and machinability
- Copper (LLD-like) construction not possible due to large expected temperature rise (exceeds recrystallization limit of Cu)

Leading edge heating is a critical issue for high-Z PFCs and motivates alternate geometries

- Leading edges lead to heat-flux enhancement factor
- Wire-EDM fabrication method leads to minimal gap between castellations
- Tile-to-tile gap and front-side access require chamfers

Inhomogeneous surface temperatures result in larger total particle flux

- Leading edges result in larger average temperature
 - Chamfers localize heating
 - Fish-scaling increases average heating
- Exponential vapor pressure produces strong increase in particle flux
- Lithium likely to erode fastest from areas of enhanced heating

Pre-filled target concept integrates Li reservoir with high-Z tile scheme

- Similar to CPS device but applicable as divertor PFC
- Utilizes wire-EDM fabrication to obtain complex geometry
- Emphasizes passive replenishment via capillary action
- P. Rindt, TU/Eindhoven Thesis Project, see poster

NSTX-U

Jaworski – Incremental upgrades for LM-PFCs in NSTX-U – 4th ISLA – Granada, Spain 2015

Preliminary tests indicate basic concept is feasible

- Prototype testing used isopropyl alcohol as surrogate
- Initial tests demonstrated wicking to surface and feasibility to empty reservoir via surface wick
- Effectiveness highly dependent on surface capillary structure and texturing

Multiple surface treatments tested for enhancement of wicking and flow (1)

- Comparison to LLD flamesprayed material
- Wire-EDM microtexturing
- Enhancedporosity flame-spray

Multiple surface treatments tested for enhancement of wicking and flow (2)

- Simple wicking height apparatus used
- All samples show improved wicking over LLD flame-spray surface
- Wire-EDM micro-texturing similar to laser-texturing method developed by Lin et al. (J. Nucl. Mater. 2013)

Jaworski – Incremental upgrades for LM-PFCs in NSTX-U – 4th ISLA – Granada, Spain 2015

Three-step progression provides roadmap for liquid metal PFCs in NSTX-U

- NSTX-U provides a challenging environment for PFCs and great flexibility for testing new divertor and material concepts
- Starting step of high-Z divertor upgrade provides high-heat flux target for evaporated lithium experiments over a wide temperature range
- Pre-filled targets for the divertor can provide information on LM behavior with significant reservoir capacity
- Flowing PFCs can build upon operational experience gained with pre-filled targets and parallel efforts in safety and LM handling systems