## NSTX Confinement and Transport - Contributions to Databases -

S.M. Kaye PPPL, Princeton University Princeton, N.J. 08543, USA

CD & Modeling ITPA St. Petersburg, Russia 8-12 April 2003

# Outline – NSTX Contributions to ITPA Databases

- L-H threshold data already contributed
- 0D confinement
  - L and H-mode data
  - Global  $\tau_E$  available
    - EFIT (magnetics only or electron p(r) + diamagnetic flux)
  - Working on thermal  $\tau_{\text{E}}\text{'s}$ 
    - Beam ion loss can be significant (up to 40%)
- Profile data
  - Database of TRANSP results being assembled (NBI)
  - Checking consistency between magnetics and kinetics

Special thanks to R. Bell, C. Bush, B. LeBlanc, R. Maingi, S. Sabbagh

## H-mode Operation is Routine - "Steady-State" Achieved



• H-mode phase duration > 500 ms (with NBI)

## The NSTX H-mode Access Space is Wide



- Lower Single Null (LSN) & Double Null (DN) Divertor configurations
- Lowest threshold/most reproducible with HFS midplane gas injection

C. Bush, R. Maingi

#### Confinement Gain in Steady-state After the H-mode Transition is Often Modest





- n<sub>e</sub> profile hollow after transition and fills in 300-500 ms
- T<sub>e</sub> profile flattens initially and peaks later in time

B. LeBlanc



## L-H Threshold Probed





# Bursty Fast Ion Loss May Induce Transition

 $D_{\alpha}$  fluctuations prior to L-H transition associated with bounce-precession fishbone bursts

L-H when significant fast ion loss (neutron drop) –  $E_{radial}$ ?



# 0D Confinement Enhanced Relative to Conventional R/a Scalings



- $\tau_{\text{E}}^{\text{exp}}$  from EFIT magnetics reconstruction
  - Includes fast ion component
- Quasi-steady conditions (i.e., 1 to 2  $\tau_{\text{E}}\text{'s})$
- $H_{98pby,2}$  up to 1.5 (wrt global  $\tau_{E}^{exp}$ )

#### L-Mode Plasmas Have Parameter Dependences Similar to Those at Conventional R/a





P<sub>NBI</sub>+P<sub>oh</sub>-dW/dt (MW)

#### H-mode Scaling Needs More Development - ELM Dependence, Non-Linearities



Dedicated scaling experiments planned

#### Time Dependent Kinetic Profile Measurements Allow Profile Analysis

- Thomson scattering
  - $T_e(R,t), n_e(R,t)$
  - 60 Hz, 20 channels
- Impurity charge exchange
  recombination spectroscopy
  - $T_i(R,t), v_{\phi}(R,t)$
  - 17 channels,  $\Delta t = 20$  msec
- Bolometer
  - $P_{rad}(R,t)$ , 16 channels
- Ultra soft x-ray arrays
  - 4 fans of 16 channels each



## Kinetic Data Validated Where Possible



# $T_i > T_e$ during NBI Indicates Good Ion Confinement

- Classical fast particle slowing down predicts predominant electron heating
  - 2/3 to electrons
  - 1/3 to ions
- $T_i = T_e$  in edge region
- High rotation associated with good ion confinement



R.E. Bell

#### Global Parameters from Kinetic Analysis Agree With Those From Magnetic Analysis and Neutrons



TRANSP assumes classical beam slowing down

A.L. Roquemore

## Relatively Good Agreement Between Magnetics and Kinetics



## Low Ion Thermal Transport, High Electron Thermal Transport

 $\chi_i \leq \chi_i^{NC} < \chi_e$ ,  $\chi_i^{NC}$  from NCLASS



Minor Radius (m)

#### **Electron Losses Dominant**



## Electron transport reduced when s < 0?

1 MA/4.5 kG/1.7 MW NBI 'L-mode'



Shear reversal inferred from USXR, TRANSP

D. Stutman, S. Kaye, S. Sabbagh

#### Electron ITB Formation with HHFW in Low Density Deuterium Plasma



# Increase in T<sub>e</sub> Corresponds to Decrease in $\chi_e$

- Power deposition from ray tracing
- T<sub>io</sub>(t) obtained from X-ray crystal spectrometer
- $\chi_e$  progressively decreases in the central region



B. LeBlanc, R. Bell, M. Bitter

# Plans

- Dedicated L-H threshold study data submitted
  - Lower limit of P<sub>LOSS</sub>
  - Additional data when new experiments performed
  - Explore possible R/a,  $I_p$  dependence
- 0D confinement data is being worked on
  - Global  $\tau_E$ 's available now
  - Fast ion energy content/loss can be significant
  - Corrections for fast ion content, loss require either
    - TRANSP run for each discharge submitted, or
    - Series of TRANSP "test" runs to develop parametric scalings (assuming scalings with I<sub>p</sub>, B<sub>T</sub>, n<sub>e</sub>, shape, etc, independent)

# Plans (cont'd)

- Profile data
  - Data validation a continuing effort
    - Expect further modifications to profiles, especially in outer regions
    - Check magnetics vs kinetics consistency
  - IDL scripts to extract data and create appropriate \_0D, \_1D, and \_2D files written and submitted to C. Roach
- Programmatic issue NSTX physicists would like to analyze/publish data before releasing