Specialists Working Group on Reflectometry report to ITPA-12 (Princeton)

G.D.Conway, G.Vayakis

Group activity summary

- Various progress meetings:
 - RWG meeting at IAEA, Chengdu (Oct. '06) 1st report from E.Doyle on UCLA studies
 - Discussions with US group members at APS (Nov. '06) on UCLA proposals
 - IT team met with RF party (Nov. '06) to discuss HFS progress & next steps
- RF: HFS first bend simulations and mock-up results
 - In-line waveguide window simulations
- JP: Technological developments & MIR
- EU: Plasma position refl. antenna asymmetry study
 - ITER plasma pos. task: cluster of Associations formed = IST + CIEMAT + CEA + ENEA/CNR
- US: Preliminary re-assessment of LFS main refl. requirements
 - Initial UCLA report + proposals (T.Peebles) to BPO workshop (Feb. '07)
 - Report circulated to RWG for comment. Initial feedback provided
 - Updated report (T.Peebles) in US progress meeting on Monday

Actions

- Action 09a223: Reflectometry WG to coordinate the benchmarking of the various reflectometry simulation codes
- Action 10a235: Petrov/Petrov to report on the access conditions for refractometry on ITER (optimal launch frequency plus effects of beam refraction)
- Action 10a236: RWG to assess the deleterious effects of antenna misalignment on profile measurements by reflectometry (unwanted Doppler effects)

- Groups in U.Stuttgart & CIEMAT performing full-wave simulations to match Doppler simulations of V.Bulanin
- Detailed ray-tracing starting
- Progress on 2nd channel on FTU

- See US party report
- Beam tracing studies (Conway)
- GAP 5 plasma shape sensitivity (S.Heuraux)
- Results from AUG → k⊥ps < 2 okay for ITER O-mode edge Doppler measurements

HFS first bend optimization

HFS first bend optimization - simulation

- Calculated transmission with various ro and for both polarizations
- X-mode (E-plane bend) most difficult case (note transmission 0.8 = 0.97dB)

E parallel to bend = XI-mode

E perpendicular to bend = O-mode

HFS first bend optimization - experimental

- ro = 100mm & L = 399.5mm
- attn. = (tapers + bend) tapers
 → resonances + offset ~1dB
- Simulation & measured show good agreement
- Good performance with bend radius fitting in available space
 8 – 80GHz in X-mode
 - 15 120GHz in O-mode

Contract with Rosatom

HFS + PP waveguide vacuum boundary

HFS waveguide window

- Concept in-line waveguide window (Petelin & Kasparek 1991 Int.J.Elec.). Quartz fingers give refractive index transition → very low reflection
- Computed insertion loss 5% (TE10) & 7% (TE01)
 @ 80GHz. Double window → -0.82dB ripple loss
- Electro. mag. prototype under construction/test

• Edge bonding to Cu. still to be resolved

Cu Waveguide

1.25

 $\varepsilon = 3.8$

15mm

2

Position reflectometry antenna design

- Waveguide 22 x 14mm (outside dimension) flaring out to 30mm at antenna mouth with 6mm w/g spacing
- Spacing means antenna flare is asymmetric in toroidal direction → asymmetric radiation pattern, significant at highest launch frequencies

Position reflectometer antenna symmetry

- Simulated (HFSS) E-plane radiation patterns for symmetric & asymmetric flares
- Asymmetric: ~2° tilt @ 60GHz; negligible @ 15GHz
- Emit / Receive pattern overlap varies with distance
- Symmetric flare would need w/g spacing >11mm, feasible in blanket but difficult elsewhere
- Shape toroidal wavefront? / Effect of blanket?

Recent developments in Japan

- Large effort devoted to technology development. Two major recent conferences:
 - 16th Intl. Toki Conf. (ITC-16) on Advanced Imaging & Plasma Diagnostics (Dec. 2006)
 - US-Japan-Korea Workshop on Microwave Devices (Dec. 2006)
- Development of 2D-3D full-wave simulation codes (Hojo) applications to:
 - Relativistic effects
 - Ultra-short pulse reflectometery / radar (Tokuzawa)
 - Microwave imaging (Ignatenko)
 - Fundamental applications Wire waveguides (Hojo)
- Development of MIR / ECEI system on LHD (Nagayama / Koji)
- Development of 20GHz MIR system on TPE-RX RFP device (Nagayama)
- Fabrication of notch filters, planar antennas & beam steering devices for MIR/ECEI using electro-fine forming (EF2) technology (UCD / KASTEC)
- Investigating application of THz-TDS (time domain spectroscopy) for ITER divertor reflectometer measurement of density (Tokuzawa) – See presentation by A.Donne on UCD proposals

Microwave Imaging Reflectometry on LHD

Y.Nagayama

- MIR system (NIFS) combined with ECEI (KASTEC) for turbulence studies
- In-vessel remote controlled mirrors for alignment
- Separate illumination & detection optics (dichroic plate) reduces noise

Optics and hardware installed (all mirror system)

• Test results – 25cm diameter illumination, 3.3cm resolution

MIR system on LHD

 Initial results from LHD obtained – development ongoing

Y.Nagayama

LFS reflectometer antennas

Original LFS outline design

- Allocation for 12 broad-band multi-mode (O/X) waveguides
 → 6 bistatic systems
- Antennas not optimized, place holders: 89.5mmØ horns.
- Two sets of mid-plane clusters with different optimization & use
 - Profile: aligned with central z of Scenario 2. Anticipate $\Delta z \approx 30$ coverage
 - MHD / fluctuation / turb. single chord, correlation
 - Plus 2 Doppler locations
- Edge gradient region primary aim, core when possible

Original layout – ITER_D_226HY6 Nov. 2002

LFS antennas – Summary of UCLA assessment

- Preliminary status report of LFS main plasma presented to US BPO diagnostic workshop, Feb.'06
 → Copy circulated to RWG with request to comment
- UCLA assessment provides first detailed investigation of LFS reflectometer requirements Very valuable exercise, much detailed information, but only a beginning!
- Main points:
 - 1. For technical reasons reduce frequency ranges, plus split O-mode into 2 bands:

Xu-mode:	$76 - 220 \text{GHz} \rightarrow$	76 – 180GHz	(single corrugated waveguide)
O-mode:	$15 - 155 GHz \rightarrow$	15 – 60GHz 40 – 160GHz	(two w/g sizes required)

n.b. main constraint on O-mode is mitre-bend design at low frequency end

- 2. Anticipate density peaking (×1.2 1.4) \rightarrow Improves radial access for all modes: Opens up core access from LFS
- 3. Ray-tracing analysis \rightarrow Need more antennas for z-tolerance (plasma column height variation)
- Proposed vertical array of 10 monostatic high-gain antennas
- Proposed combining (uncal.) O-mode ECE fluctuation and X-mode Refl.
- Alternate bistatic edge array presented in US Progress meeting (Monday)

LFS antennas – Initial RWG thoughts on UCLA proposals

- Monostatic LFS array driven by UCLA desire for core Xu-mode probing with z-tolerance
 - RWG has major concern with monostatic antennas
 - Can expect significant w/g resonances → Any measurement involving phase (profiles & fluctuations) needs bistatic configuration.

"A bistatic launch & receive arrangement should be used to minimize waveguide modes and spurious reflections." Doyle etal. (Varenna 1995) p117

- A monostatic concept must be demonstrated to work (e.g. on DIII-D or JET) before adoption
- Splitting O-mode band has 2 effects:
 - Need dedicated 15 60GHz antenna / waveguide pair \rightarrow Rectangular w/g / PP ?
 - But upper O & X-mode bands have significant frequency overlap
 - \rightarrow allows polarization multiplexing of transmission lines
 - \rightarrow bistatic systems with same number of antennas as separate monostatic
- Need antenna gain optimization study
 - Profile antennas should be optimized for edge → increased z-tolerance. 2 or 3 pairs maybe sufficient. Path length possibly problematic
 - Try to maintain at least one high gain antenna pair optimized for fluctuations and core probing
- Combining Refl. & ECE in same w/g is likely to be problematic

LFS antennas – Diffraction effects

- Ray-tracing = asymptotic solution (Geometic optics) of Maxwell eqn.s
- GO / WKB breaks down at cutoff, but still a good approximation of beam propagation
- Ray-tracing does not account for diffraction and interference effects: can severely underestimate beam spreading
- Use beam-tracing or quasi-optical techniques
- Receiver spot size is much broader
 → relaxes constraint on array
- Also expect high level of turbulence in edge → broadens beam further

TORBEAM (Poli/Pereverzev) paraxial WKB Gaussian beam & 3D ray-trace – Doppler ant.

8.2

R (m)

8.3

8.4

0.6

0.5

7.9

8.0

8.1

8.5

LFS antennas – Edge profile antenna optimization

- Increase tolerance to plasma column vertical movement & triangularity change (cutoff layer curvature) by decreasing antenna gain (fnct. of ant. dia. & freq.)
- Beam-tracing with divergent Gaussian beam at max. & min. scenario height

 → few degrees extra divergence maybe sufficient for scenario z-tolerance (edge O-mode) with 2 or 3 positions
- Higher z-tolerance comes at expense of returned signal strength
- Plasma start-up not covered
- Core probing (profiles X-mode or edge fluctuations) requires different antenna optimization → higher gain

TORBEAM Gaussian beam: w = 2.9 cm f = -50 cmScenario 3a – Hybrid, 80GHz, O-mode

LFS antennas – Doppler reflectometry

- Doppler rotation measurement considered highly desirable by RWG. Rotation meas. in DDD via poloidal correlation refl.
- Maybe obtained as a by-product of "nonaligned" horizontal antennas, but parallel beam desirable
- Doppler could use monostatic ant.
- Beam tracing for proposed UCLA monostatic vertical array → all poloidal locations experience misalignment
- Array gives good spread in k_⊥ values for DR measurements!
- Horizontal core optimized antennas (high gain) maybe suitable for edge DR
- 2 dedicated tilt antennas minimum question over bistatic versus 2 line-ofsight (differential meas. for tracking fast events)

G.D.Conway, 29-Mar-07

• 12 w/g = 6 bistatic systems

LFS antennas – Alternatives for Port 9

- 1 pair O-mode
 15 60GHz
 edge profile optimized
 GAP 3 backup ?
- 2 pair O/X-mode
 40 180GHz
 edge profile optimized
- 2 pair O/X-mode
 40 180GHz
 fluct. / core optimized
- 2 pair O/X-mode tilted Z
 Doppler optimized install all 4 antennas but only 2 w/g initially
- Possible integration of GAP 3 O-mode antennas
- Refractometry?

