

G. Taylor Princeton Plasma Physics Laboratory

> R. W. Harvey CompX

Progress Meeting on ITER Relevant Diagnostic Developments in the USA

12th ITPA Diagnostics Topical Group Meeting Princeton, March 26, 2007

ITER ECE 💳

Assessment Task

ITER ECE =

- ECE & Thomson scattering "T_e discrepancy" on JET & TFTR implies non-Maxwellian bulk electrons at T_e ≥ 7 keV
- Assess viability of moderately oblique (≤ 20°) ECE antenna at E9 port to measure bulk electron energy distribution:
 - What electron energies can be detected by a 10-20° view?
 - Are T_e measurements possible with oblique view if bulk electron energy distribution remains Maxwellian at high T_e?
 - Can a "two-temperature" bulk electron distribution be reconstructed from combination of 0° & 10-20° oblique views?
 - What constraints are imposed on an oblique viewing antenna by the existing port plug design?

- Motivation for Including Oblique ECE Diagnostic
- Modeling Results for Oblique ECE on ITER
- Proposed Upgrade/Modification for Oblique ECE
- Conclusions & Recommendations

 Observed "T_e Discrepancy" extrapolates to potential ~ 50% discrepancy in ITER

E. de la Luna (CIEMAT), C. Sozzi (ENEA)

Model ECE from ITER Plasmas with GENRAY Ray Tracing Code

- Emission and absorption calculated along rays originating at the antenna:
 - *fully relativistic emission and absorption*
 - radiation transport equation solved back to antenna
 - ray trajectories calculated with either cold or hot dispersion
- ECE spectra modeled for antenna pointing 0°, 10° & 20° to perpendicular to outer magnetic flux surface:
 - *emission spectrum computed every 5 GHz*
- Two ITER plasma scenarios studied:
 - H-mode: $T_e(0) = 25 \text{ keV}, n_e(0) = 1 \times 10^{20} \text{ m}^{-3}$
 - Steady-state, LHCD-driven: $T_e(0) = 30 \text{ keV}, n_e(0) = 7 \times 10^{19} \text{ m}^{-3}$

TER ECE

Electron Energies Contributing to ECE Flux at Edge Increase with Angle & Harmonic

Outline

Motivation for Including Oblique ECE Diagnostic

- Modeling Results for Oblique ECE on ITER
- Proposed Upgrade/Modification for Oblique ECE
- Conclusions & Recommendations

ITER ECE

Conclusions

• ECE/TS "T_e discrepancy" in TFTR & JET when $T_e \ge 7 \text{ keV}$, implying non-Maxwellian bulk electron distribution

Extrapolates to ~ 50% ECE/TS discrepancy in ITER

- ECE modeling for ITER shows 10-20° oblique view should allow characterization of bulk electron distribution:
 - one oblique view probably sufficient to characterize two-temperature bulk
- Can use oblique view for $T_e(R,t)$, if bulk remains Maxwellian:
 - minimal refraction
 - spatial resolution comparable to normal ECE view
 - no viewing dump needed
 - ECE insensitive to energetic tail emission
- Can implement up to 20° oblique view in E9 port plug by rotating one ECE antenna

ITER ECE 💳

Recommendations

 Recommend implementing at least one oblique view at E9 port plug:

- 15° view, if only one oblique view funded

- 10° & 20° views, if two oblique views funded

 Evaluate how well the bulk electron distribution can be measured when measurement errors are included

 Evaluate JET oblique ECE measurements for high T_e plasmas this year:

- do JET results support the need for oblique ECE on ITER or how oblique ECE needs to be implemented on ITER?

ITER ECE