Conceptual Evaluation of Measurement of |B(R)| for determination of q(R) on ITER: Part II

Howard Y.Yuh, Jill E. L. Foley and Fred M. Levinton Nova Photonics, Inc.

12th ITER ITPA Meeting

March 26-30, 2007

Princeton, NJ

Enter the Labyrinth...

- To what precision can we determine the Stark electric field, for a given photon count?
- What photon count can we expect on ITER?
- How well can we determine the q-profile from the MSE-LS (Line Shift) measurement constraint?
- Is this approach advantageous compared to traditional MSE
 Line Polarization (MSE-LP) on ITER?

Bracket Measurement Uncertainty by Analyzing Best and Worst Case

|E| Constrains Line Spacing

Energy Levels in Second Order Perturbation:

$$E_2 = \frac{Z^2}{2n^2} + \frac{3}{2}F\frac{n}{Z}(n_1 - n_2) - \frac{1}{16}F^2(\frac{n}{Z})^4[17n^2 - 3(n_1 - n_2)^2 - 9m^2 + 19]$$

(E is energy, Z is atomic number, n is principal quantum number, F is electric field, n₁, n₂, m are quantum numbers for hydrogen wave function in parabolic coordinates)

Constrained Fit Applied to Simulated Data

Shown above are two examples with same sightline (extreme high and low photon count levels considered)

- Add random, Poisson distributed noise to photon count
- Apply least-squares fit to both beam spectra independently

Histogram from Multiple Fits to Derive Uncertainty

- Generate random noise on spectrum of each count rate 250 times
- Fit each case and record electric field
- Bin, plot and fit electric field values for estimate of measurement error

Excellent Precision at High Photon Count

Calibration is key. Interface with ITER design team to:

- Install two views of beam in duct, to monitor velocity precisely with spectrometer.
- Perform beam-into-gas calibration for baseline vacuum magnetic field.

Consider Complimentary Systems for ITER

MSE-LS

MSE-LP

Transmission grating spectrometer (Kaiser)

Pack fibers for simultaneous measurement

Best transmission for full spectrum

- Single-grating presently available
- Multiple-grating could be developed for higher throughput
- Well-matched to labyrinth etendue

Tunable birefringent filter (Nova Photonics)

- Best transmission for narrow portion of spectrum
- Easily tuned to match variations in beam energy

Throughput Factor Calculations

Parameter	Reason	Grating Spec. (IBI)	Tunable Filter (γ)
Input Object Size	Max. photon count	4.6 x 4.6 cm ²	10 x 40 cm ²
Input NA	Malaquias '03	0.015	0.015
Output NA	Limited by collection	0.278 (spectrometer)	0.416 (fibers)
Mirror Transmission	50% 1st, following better	0.34	0.34
Fiber Dia. (core/total)	Spect. / Max photons	0.2/0.25 mm	1.0/1.2 mm
Number of Fibers	Spect. input / Image size	100	36
Slitwidth	Chosen resolution	0.025 mm	n/a
Fiber Area (mm ²)	Best match	0.5	28.3
Fiber Packing Fraction	Spect. NA / Image Size	0.081	0.55
Fiber Transmission	typical value	0.9	0.9
Spect. / Filter Trans.	typical value	0.6	0.3
Quantum Efficiency/F	CCD / APD	0.8/1	0.8/2
Bandpass	Appropriate for system	0.05 nm	0.5 nm
Rel. Throughput Factor		0.00063	0.02

MSE-LS Measurement Ability on ITER

Best Case: (1.2 x 10¹³ ph/sec) x (0.01 sec) x (T. F.)

Worst Case: (3.2 x 10¹² ph/sec) x (0.01 sec) x (T. F.)

Analysis of Utility of MSE-LS vs MSE-LP

Theory and code developed by L. Zakharov (PPPL). Further details in breakout session of this meeting. Tues. 3:20 pm B318

Concept: Determine possible variances in reconstructed equilibria given a set of magnetic diagnostics and perturbation of background profiles.

- ESC equilibrium code solves linearized Grad-Shafranov equation to calculate the response of diagnostics to perturbations in plasma position and current density.
- Weight appropriately to account for accuracy of measurements.
- Use SVD analysis to determine possible error in reconstruction of q, p profiles in presence of prescribed perturbations.
- Consider relative merit of MSE-LS and MSE-LP systems for realistic measurement error in ITER

Grad-Shafranov (GSh) Equation:	
$\Delta^* \bar{\Psi} = -T(\bar{\Psi}) - P(\bar{\Psi})r^2$	
requires boundary conditions and two 1-D functions.	

Grad-Shafranov (GSh)	
Equation:	
$\Delta^* \bar{\Psi} = -T(\bar{\Psi}) - P(\bar{\Psi})r^2$	
requires boundary	
conditions and two 1-D	
functions.	
Use ESC to solve linearized GSh for N perturbations:	
$ar{\Psi}=ar{\Psi}_0+\psi$	
$\Delta^* \psi + T'_{\bar{\Psi}} \psi + P'_{\bar{\Psi}} \psi = -\delta T(a) - \delta P(a)r^2$	
$\xi = \sum_{n=0}^{n < N_{\xi}} A_n \xi^n \delta T = \sum_{n=0}^{n < N_T} T_n f^n \delta P = \sum_{n=0}^{n < N_P} P_n f^n$	
$N = N_{\xi} + N_T + N_P$	

Grad-Shafranov (GSh) Equation:	Result can be cast in matrix form, convenient for SVD analysis:
$\Delta^* \bar{\Psi} = -T(\bar{\Psi}) - P(\bar{\Psi})r^2$	$\vec{X} \equiv \{\underbrace{A_0, A_1, \dots, A_{N_{\xi}-1}}_{N_{\xi} \text{ of } \xi}, \underbrace{T_0, T_1, \dots, T_{N_T-1}}_{N_T \text{ of } \delta T}, \underbrace{P_0, P_1, \dots, P_{N_P-1}}_{N_P \text{ of } \delta P}\}$
requires boundary	$\delta \vec{S} \equiv \{\underbrace{\delta \Psi_0, \delta \Psi_1, \dots, \delta \Psi_{M_{\Psi}-1}}_{M_{\Psi} \text{ of } \delta \Psi}, \underbrace{\delta B_0, \delta B_1, \dots, \delta B_{M_B-1}}_{M_B \text{ of } \delta B_{pol}}, \underbrace{\delta S_0, \delta S_1, \dots, \delta S_{M_S-1}}_{M_S \text{ of } \delta \text{ others}}\}$
conditions and two 1-D functions.	$\delta \vec{S} = \mathbb{A} \vec{X}$ Response matrix \mathbb{A} relates magnetic signals to
Use ESC to solve linearized GSh for N perturbations:	$\mathbb{A} = \mathbb{A}_{M \times N} \qquad \text{perturbations}$
$\bar{\Psi} = \bar{\Psi}_0 + \psi$	
$\Delta^* \psi + T'_{\bar{\Psi}} \psi + P'_{\bar{\Psi}} \psi = -\delta T(a) - \delta P(a) r^2$	
$\xi = \sum_{n=0}^{n < N_{\xi}} A_n \xi^n \delta T = \sum_{n=0}^{n < N_T} T_n f^n \delta P = \sum_{n=0}^{n < N_P} P_n f^n$	
$N = N_{\xi} + N_T + N_P$	

Grad-Shafranov (GSh) Equation:	Result can be cast in matrix form, convenient for SVD analysis:	
$\Delta^* \bar{\Psi} = -T(\bar{\Psi}) - P(\bar{\Psi})r^2$	$\vec{X} \equiv \{\underbrace{A_0, A_1,, A_{N_{\xi}-1}}_{N_{\xi} \text{ of } \xi}, \underbrace{T_0, T_1,, T_{N_T-1}}_{N_T \text{ of } \delta T}, \underbrace{P_0, P_1,, P_{N_P-1}}_{N_P \text{ of } \delta P}\}$	
requires boundary	$\delta \vec{S} \equiv \{\underbrace{\delta \Psi_0, \delta \Psi_1, \dots, \delta \Psi_{M_{\Psi}-1}}_{M_{\Psi} \text{ of } \delta \Psi}, \underbrace{\delta B_0, \delta B_1, \dots, \delta B_{M_B-1}}_{M_B \text{ of } \delta B_{pol}}, \underbrace{\delta S_0, \delta S_1, \dots, \delta S_{M_S-1}}_{M_S \text{ of } \delta \text{ others}}\}$	
conditions and two 1-D	$\delta \vec{S} = \mathbb{A} \vec{X}$ Response matrix \mathbb{A} relates	
functions.	$\mathbb{A} = \mathbb{A}_{M \times N} \qquad \text{perturbations}$	
Use ESC to solve linearized GSh for N perturbations:	Working matrix $ar{\mathbb{A}}$ includes weights of signal errors	
$ar{\Psi} = ar{\Psi}_0 + \psi$		
$\Delta^* \psi + T'_{\bar{\Psi}} \psi + P'_{\bar{\Psi}} \psi = -\delta T(a) - \delta P(a) r^2$	SVD technique used to determine variance in reconstructed quantities (eg p, q) that results from perturbations	
$\xi = \sum_{n=0}^{n < N_{\xi}} A_n \xi^n \delta T = \sum_{n=0}^{n < N_T} T_n f^n \delta P = \sum_{n=0}^{n < N_P} P_n f^n$ $N = N_{\xi} + N_T + N_P$	Result is sorted list of perturbations from least to most 'visible' and RMS error for each desired quantity	

Sample of Results: External B, ψ , and MSE-LP at 0.3° Error

Preliminary Results for MSE-LS and -LP on ITER

pressure profile reconstruction, and comparable to MSE-LP for q-profile reconstruction. Combined system advantageous for both.

Conclusion of Extended Assessment Study

- Detailed 3D SimMSE model developed
- Solution Fitting of simulated data performed
- Hardware considerations included
- With available technology, could measure |E| in ITER to 0.1%. (statistical uncertainty)
- Preliminary work with L. Zakharov's theory of equilibrium variances suggests MSE-LS may be superior to MSE-LP in ITER
- Possibility of pressure profile reconstruction with MSE-LS alone, or hybrid system

Recommendations

- Further exploration of parameter variation in SimMSE code:
 Beam energy, beam steering, aperture location.
- Study of systematic uncertainty for MSE-LS measurement.
- SimMSE model extension to include MSE-LP.
- Study of statistical and systematic uncertainty for MSE-LP measurement
- Further work with L. Zakharov: Consider other profiles, perturbation spectra, effects to ensure MSE-LS vs MSE-LP result is robust, incorporate more realistic error assessments.
- Generate recommendation regarding precision spectroscopy vs. polarimetry for optimal path forward to meet ITER design goal with minimum cost and risk.

