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Enter the Labyrinth...

To what precision can we 
determine the Stark electric 
field, for a given photon count?

What photon count can we 
expect on ITER?

How well can we determine 
the q-profile from the MSE-LS 
(Line Shift) measurement 
constraint?

Is this approach advantageous 
compared to traditional MSE 
Line Polarization (MSE-LP) on 
ITER?
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Bracket Measurement Uncertainty by 
Analyzing Best and Worst Case

Beam 4

Beam 5



|E| Constrains Line Spacing
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Energy Levels in Second Order Perturbation: 

(E is energy, Z is atomic number, n is principal quantum number, F is electric field, n1, n2, m are quantum numbers for 
hydrogen wave function in parabolic coordinates)

10 allowed 
transitions (σ0 splits 

relative to linear 
Stark)

Spectrum center, 
line widths and 

amplitudes 
determined by 

Doppler shift and 
geometry for each 

channel: Allowed to 
vary in least-squares 

fit
|E| constrains 
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|E| of 1.2 x 107 V/cm:
 40x ITER field

Wavelength



Constrained Fit Applied to Simulated Data

Shown above are two examples with same sightline (extreme high 
and low photon count levels considered)

Add random, Poisson distributed noise to photon count

Use 0.05 nm resolution

Apply least-squares fit to both beam spectra independently 
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Histogram from Multiple Fits to Derive Uncertainty

Generate random noise on spectrum of each count rate 250 times

Fit each case and record electric field

Bin, plot and fit electric field values for estimate of measurement 
error
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Excellent Precision at High Photon Count
P1B4 ‘Worst Case’ ITER View
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P3B5 ‘Best Case’ ITER View
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Integrated Photon Count in Signal Stark Spectrum

Install two views of beam in duct, to 
monitor velocity precisely with 
spectrometer.

Perform beam-into-gas calibration for 
baseline vacuum magnetic field.

Calibration is key. Interface with 
ITER design team to:

Statistical Uncertainty vs. Photon Count

Worst ITER View

Best ITER View



Consider Complimentary Systems for ITER

Best transmission for full spectrum

Single-grating presently available

Multiple-grating could be 
developed for higher throughput

Well-matched to labyrinth etendue

Transmission grating 
spectrometer (Kaiser)

Tunable birefringent filter 
(Nova Photonics)
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Best transmission for narrow 
portion of spectrum

Easily tuned to match variations 
in beam energy

MSE-LS

Pack fibers for 
simultaneous 
measurement

MSE-LP



Throughput Factor Calculations

Consider also: Mosaic grating of abv x 4

Parameter Reason Grating Spec. (|B|) Tunable Filter (γ)
Input Object Size Max. photon count 4.6 x 4.6 cm2 10 x 40 cm2

Input NA Malaquias ’03 0.015 0.015
Output NA Limited by collection 0.278 (spectrometer) 0.416 (fibers)

Mirror Transmission 50% 1st, following better 0.34 0.34
Fiber Dia. (core/total) Spect.  / Max photons 0.2/0.25 mm 1.0/1.2 mm

Number of Fibers Spect. input  / Image size 100 36
Slitwidth Chosen resolution 0.025 mm n/a

Fiber Area (mm2) Best match 0.5 28.3
Fiber Packing Fraction Spect. NA / Image Size 0.081 0.55

Fiber Transmission typical value 0.9 0.9
Spect. / Filter Trans. typical value 0.6 0.3
Quantum Efficiency/F CCD / APD 0.8/1 0.8/2

Bandpass Appropriate for system 0.05 nm 0.5 nm
Rel. Throughput Factor 0.00063 0.02



MSE-LS Measurement Ability on ITER

Best Case: (1.2 x 1013 ph/sec) x 
(0.01 sec) x (T. F.)

Worst Case: (3.2 x 1012 ph/sec) x 
(0.01 sec) x (T. F.)

Best ITER View

Worst ITER View

Available 
Spectrometer

XL Grating 
Spectrometer
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Analysis of Utility of MSE-LS vs MSE-LP
Theory and code developed by L. Zakharov (PPPL). Further details in 

breakout session of this meeting. Tues. 3:20 pm B318

Concept: Determine possible variances in reconstructed equilibria 
given a set of magnetic diagnostics and perturbation of background 
profiles.

ESC equilibrium code solves linearized Grad-Shafranov equation to 
calculate the response of diagnostics to perturbations in plasma 
position and current density.

Weight appropriately to account for accuracy of measurements. 

Use SVD analysis to determine possible error in reconstruction of q, p 
profiles in presence of prescribed perturbations.  

Consider relative merit of MSE-LS and MSE-LP systems for realistic 
measurement error in ITER



Details of Powerful Technique



Details of Powerful Technique
Grad-Shafranov (GSh) 

Equation:

∆∗Ψ̄ = −T (Ψ̄) − P (Ψ̄)r2

requires boundary 
conditions and two 1-D 

functions.



Details of Powerful Technique
Grad-Shafranov (GSh) 

Equation:

∆∗Ψ̄ = −T (Ψ̄) − P (Ψ̄)r2

requires boundary 
conditions and two 1-D 

functions.

Use ESC to solve linearized GSh for N perturbations:

Ψ̄ = Ψ̄0 + ψ

∆∗ψ + T ′

Ψ̄
ψ + P ′

Ψ̄
ψ = −δT (a) − δP (a)r2

ξ =

n<Nξ∑

n=0

Anξn δP =

n<NP∑

n=0

Pnfn
δT =

n<NT∑

n=0

Tnfn

N = Nξ + NT + NP



Details of Powerful Technique
Grad-Shafranov (GSh) 

Equation:

∆∗Ψ̄ = −T (Ψ̄) − P (Ψ̄)r2

requires boundary 
conditions and two 1-D 

functions.

Use ESC to solve linearized GSh for N perturbations:

Ψ̄ = Ψ̄0 + ψ

∆∗ψ + T ′

Ψ̄
ψ + P ′

Ψ̄
ψ = −δT (a) − δP (a)r2

ξ =

n<Nξ∑

n=0

Anξn δP =

n<NP∑

n=0

Pnfn
δT =

n<NT∑

n=0

Tnfn

N = Nξ + NT + NP

Result  can be cast in matrix form, convenient for 
SVD analysis:

!X ≡ {A0, A1, ..., ANξ−1
︸ ︷︷ ︸

Nξ of ξ

, T0, T1, ..., TNT −1
︸ ︷︷ ︸

NT of δT

, P0, P1, ..., PNP −1
︸ ︷︷ ︸

NP of δP

}

δ"S ≡ {δΨ0, δΨ1, ..., δΨMΨ−1
︸ ︷︷ ︸

MΨ of δΨ

, δB0, δB1, ..., δBMB−1
︸ ︷︷ ︸

MB of δBpol

, δS0, δS1, ..., δSMS−1
︸ ︷︷ ︸

MS of δ others

}

δ"S = A "X

A = AM×N

Response matrix     relates 
magnetic signals to 

perturbations

A



Details of Powerful Technique
Grad-Shafranov (GSh) 

Equation:

∆∗Ψ̄ = −T (Ψ̄) − P (Ψ̄)r2

requires boundary 
conditions and two 1-D 

functions.

Use ESC to solve linearized GSh for N perturbations:
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∆∗ψ + T ′

Ψ̄
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SVD analysis:

!X ≡ {A0, A1, ..., ANξ−1
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Nξ of ξ
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︸ ︷︷ ︸
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NP of δP

}

δ"S ≡ {δΨ0, δΨ1, ..., δΨMΨ−1
︸ ︷︷ ︸

MΨ of δΨ

, δB0, δB1, ..., δBMB−1
︸ ︷︷ ︸

MB of δBpol

, δS0, δS1, ..., δSMS−1
︸ ︷︷ ︸

MS of δ others

}

δ"S = A "X

A = AM×N

Response matrix     relates 
magnetic signals to 

perturbations

A

Working matrix     includes weights of signal errors

SVD technique used to determine variance in 
reconstructed quantities (eg p, q) that results from 

perturbations

Result is sorted list of perturbations from least to most 
‘visible’ and RMS error for each desired quantity

Ā



Sample of Results: External B, ψ, and MSE-LP at 0.3° Error 
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Preliminary Results for MSE-LS and -LP on ITER

MSE-LS appears superior to MSE-LP for 
pressure profile reconstruction, and 
comparable to MSE-LP for q-profile 
reconstruction. Combined system 

advantageous for both.
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Conclusion of Extended Assessment Study

Detailed 3D SimMSE model developed

Fitting of simulated data performed

Hardware considerations included

With available technology, could measure  |E| in ITER 
to 0.1%. (statistical uncertainty)

Preliminary work with L. Zakharov’s theory of 
equilibrium variances suggests MSE-LS may be superior 
to MSE-LP in ITER

Possibility of pressure profile reconstruction with MSE-
LS alone, or hybrid system



Recommendations

Further exploration of parameter variation in SimMSE code: 
Beam energy, beam steering, aperture location.

Study of systematic uncertainty for MSE-LS measurement.

SimMSE model extension to include MSE-LP. 

Study of statistical and systematic uncertainty for MSE-LP 
measurement

Further work with L. Zakharov: Consider other profiles, 
perturbation spectra, effects to ensure MSE-LS vs MSE-LP result is 
robust, incorporate more realistic error assessments.

Generate recommendation regarding precision spectroscopy vs. 
polarimetry for optimal path forward to meet ITER design goal 
with minimum cost and risk.


