PPPL ITER NEUTRONICS ANALYSIS

<u>Objective</u>: Develop <u>neutronics analysis</u> capability <u>at PPPL</u> to support US ITER diagnostic and port plug design.

RFEDER ITPA PPPL MARCH 2007

PPPL ITER NEUTRONICS ANALYSIS

A Neutronics Analysis Tool for Diagnostic Port Design Engineers

WHY USE ATTILA ?

A Neutronics Analysis Tool for Diagnostic Port Design Engineers

Find a Way for PPPL Engineers to Evaluate Neutronics Implications of Diagnostic Designs

Limited or No Neutronics Experience → Collaborate with Neutronics Experts
 Strong Background In Finite Element Analysis (FEA) and Computer Aided Design (CAD) 3D Modeling
 Experience with LINUX Helps

ATTILA Built for use by Non-Expert Design Engineers

- Gamma and Neutron Flux Solution Everywhere in Model → MCNP Variance Reduction Techniques
 Easy to Visually Check Solution Accuracy
- •TECPLOT Post Processing
- ATTILA Graphical User Interface (GUI) and Meshing → <u>Strong Technical Support from ATTILA</u>

Some Assembly Required!

Hardware → 64 Bit 4 Processor Opteron CPU with 16 GB of RAM
Software → Solid Works Makes High Fidelity Parasolid Models for ATTILA

Disadvantages of ATTILA

MCNP Is the Only Licensed Neutronics Analysis Software → ATTILA Benchmarking Special Techniques Required for Streaming Analysis

4

SolidWorks Benchmark CAD 40° Model

SolidWorks Benchmark CAD 40° Model

Benchmark Divertor Model

Benchmark BSM Model

1

SolidWorks Benchmark CAD 40° Model

Revised TF Coil Model

Inboard Leg Cross Section

10 Left and Right Inboard Winding Sections

ATTILA Tetrahedral Mesh

500,000 Elements \rightarrow ~1 Week with 40 Energy Groups and Sn16 Quadrature

Layering and Variable Mesh Size

Benchmark Material Properties and Mixing

MCNP Plasma Source Definition

40x40 Probability Matrix \rightarrow Each Cell Assigned a DT-neutron born probability

500 MW neutron power \rightarrow 40° Normalization factor ~ 1.972E+19

MCNP Matrix Mapped on to ATILLA Mesh With Specially Written Python Script

Reference Source Definition From ITER Nuclear Analysis Report (NAR) (G 73 DDD 2 W 0.2)

Use for Diagnostic Evaluations \rightarrow Other Scenarios ??

RFEDER ITPA PPPL MARCH 2007

ITER Benchmark Results

Neutron Flux Contours (n/cm²-s)

rter

ITER Benchmark Results

Equatorial Port Neutron Flux (n/cm²-s)

ITER Benchmark Results

Boundary Condition Implementation Problems

What's Next

ATTILA Capability Upgrades

Distributed Memory Parallel Processing

Intended for production use in ITER applications
Near linear scaling expected on up to 16-32 processors
Parallel version will support periodic boundary conditions for arbitrary azimuthal segmentation
→ Will be exact for 40 degree ITER

Activation Analysis

A built-in activation capability is being added to Attila
Activation module computes the activated source in every computational element
Multiple pulse/decay cycle simulations can be performed

Boundary Source

Global Model → Detailed Port Plug Models
Economize Element Count and CPU Time
Not Currently Under Development Because of DMP Upgrade

What's Next

Diagnostic Integration and Port Design Studies

1. Parametric Structures Study

