
Status of Diagnostic Engineering

C.I.Walker R.Barnsley, L.Bertalot, A.E.Costley, A.Martin, G.Vayakis

Diagnostic Division ITER International Team Cadarache JWS; Garching JWS; Naka JWS.

Chris.Walker@iter.org

Phone: +33 4 4225 4332

C.I.Walker - Status of Diagnostic Engineering ITER_D_25N8SB

Overview of activity Equatorial Port Upper Port NB Cell Ports Divertor Vacuum Vessel Buildings

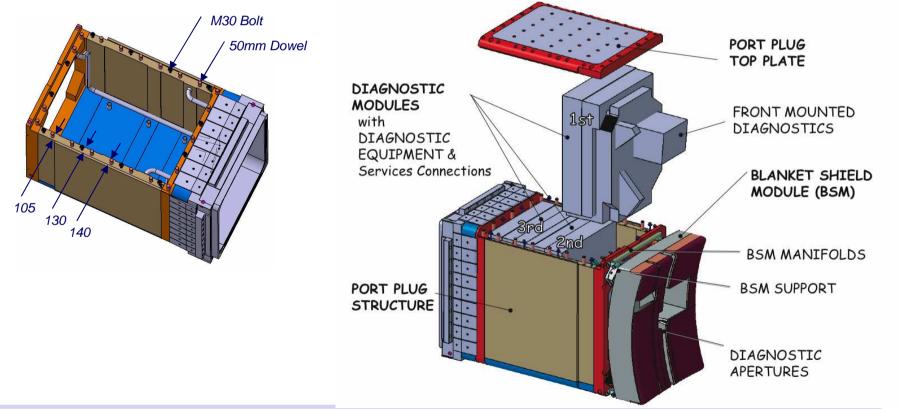
Project Management Procedures Design Office - CATIA 2007 Baseline Structure Procurement Documentation Procurement Tools

Diagnostic Work Plan to December 2008

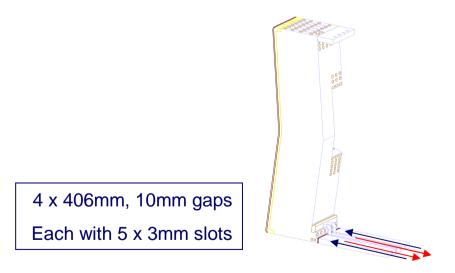
Conclusions

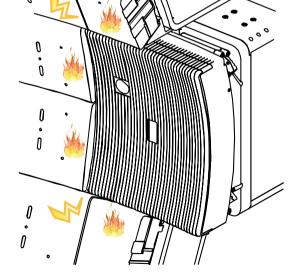
A Few Design Change Requests affect the diagnostic engineering:

- DCR-56 Divertor Lower Stop Divertor Diagnostics (to be assessed) On-going TCM-21 Sept 2006
- DCR-49 NB maintenance scheme and NB cell lay-out Upper Port Plug #05,#06,#07 Ongoing TCM-18 Jan 2006
- DCR-35 Hot Cell Design Modifications Subject to significant review –building cost v. functionality descoping Ongoing TCM-17 May 2005

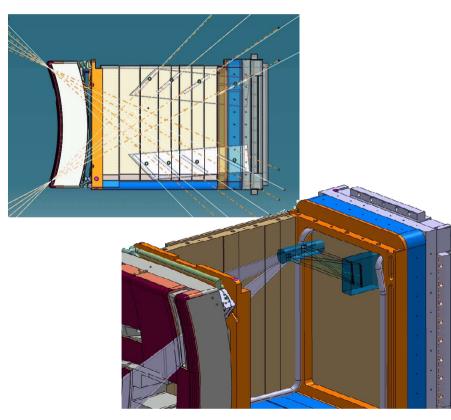

There are many other ad hoc 'reviews' as the project gets going to a fixed timescale, cost, sharing, etc.

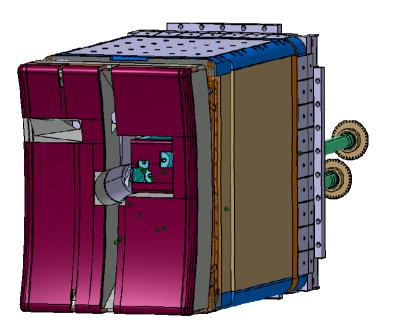
EQUATORIAL PORT


- New Top Plate Bolting Arrangement EqPP Top Plate Fixing (ITER_D_24ZF8M v1.1)
- Interface of Generic Diagnostic/Shielding Modules Structure stepped
- Back Plate Opening Lost Space Evaluated, Input for Seal Study, not universal reference
- Design Studies of Flange Attachment & Sealing 3 alternatives R&D progressing
- Streaming Shields await analysis

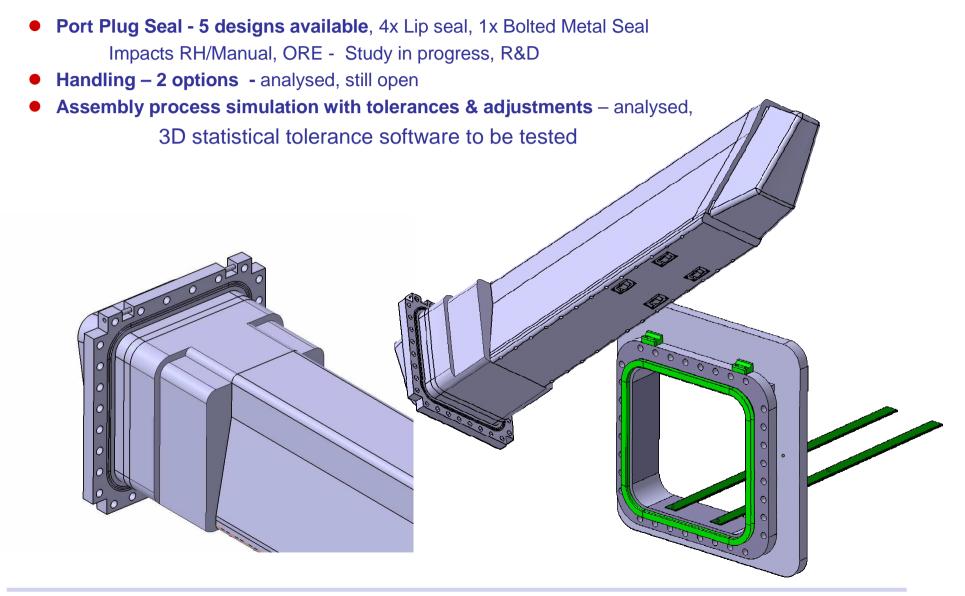

EqPP Expl-01

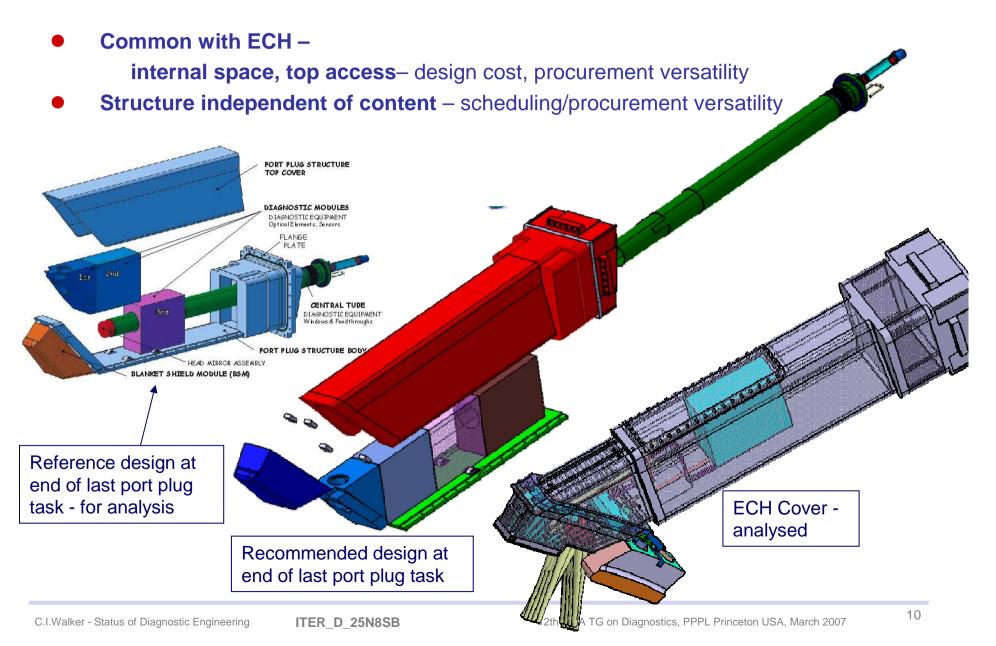
- **BSM apertures defined,** adapted to vertical construction of the BSM
- Retracted 30mm
- BSM Arrangement Proposed- 1st pass, analysed, still to be reviewed & improved
 - Port plug interface definition, Port plug structure space/material consumption, Water manifolding, Intrinsic Stiffness, Assembly Access & reliability
- Feature for Adjustment to Port Survey still required



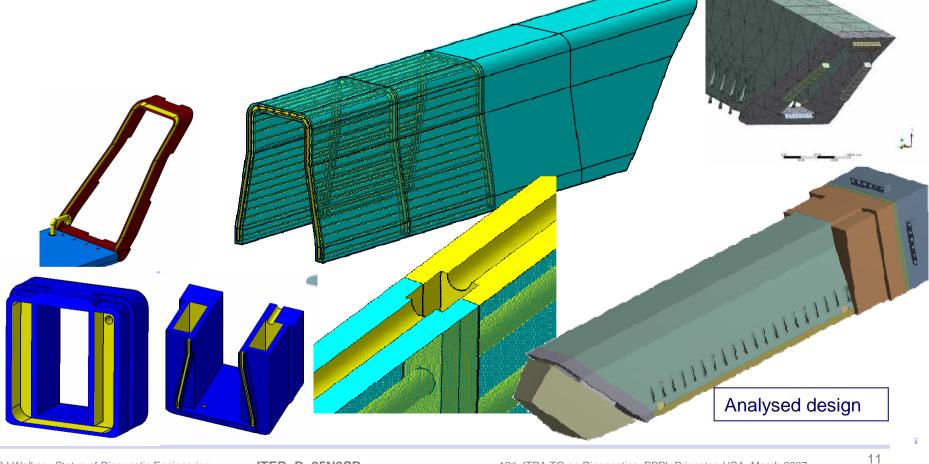

1/4 BSM

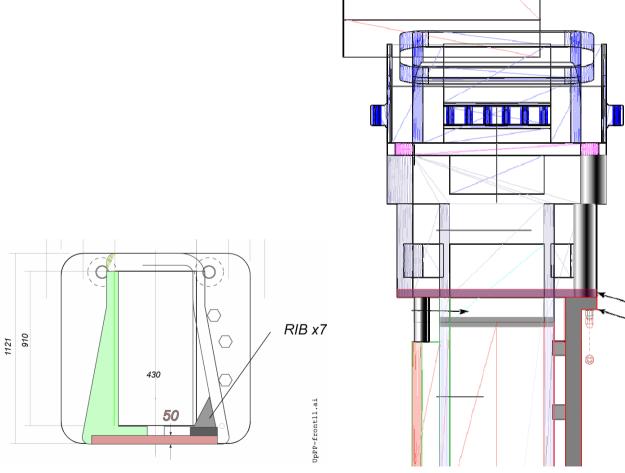
- **Removable Elements in Window Seal Plate –** LIDAR, RNC, XRCS
- Removable Elements from Front Thermal analysis done, under study fixation, stress from EM loads, thermomechanical, thermohydraulic, manufacturing,



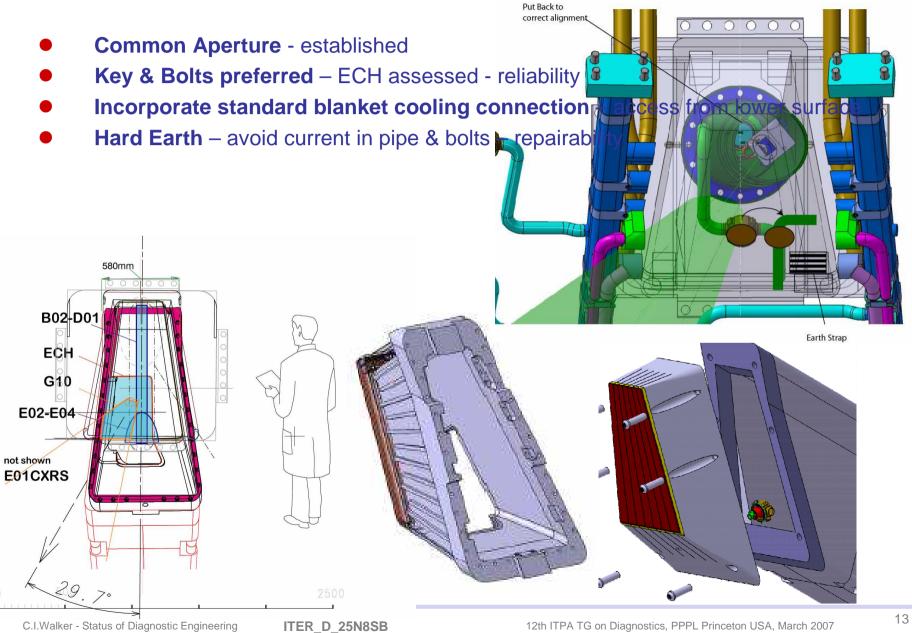


UPPER PORT

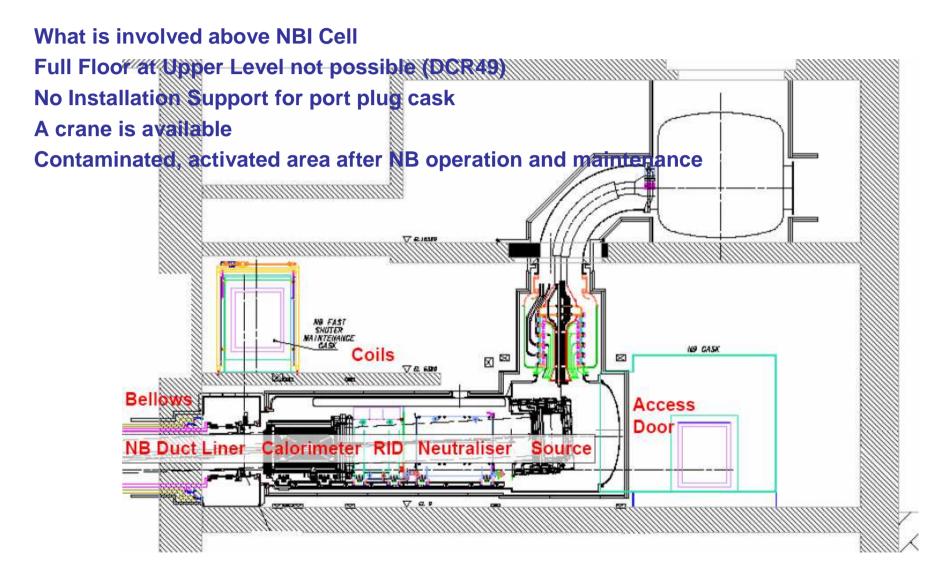



- **Trapezoidal section pressed, drilled** cost, dimensional stability
- Bottom Plate bolted & pinned analysed globally details required
- **Back Section uncooled** analysed operation & baking cost
- Manifold from forged blocks stiffness dimensional stability

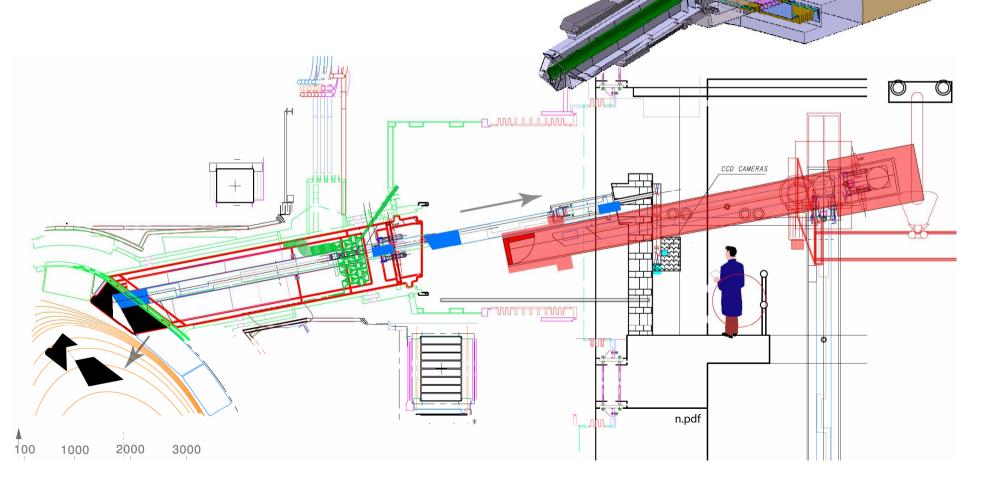
ARE01072

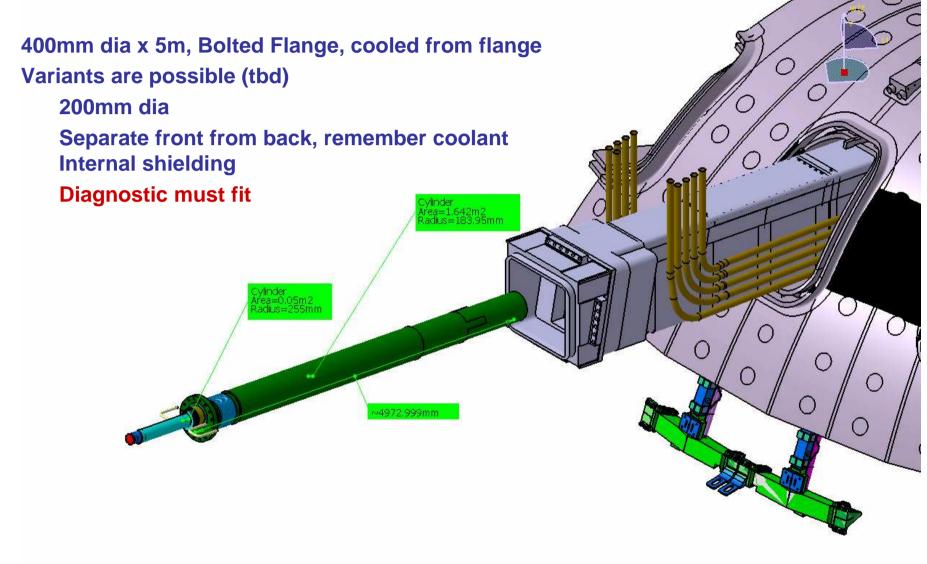


- Adjust to Survey, Back & BSM Plate scheduling versatility
- Bolted Body to Manifold Box to be stressed cost, procurement versatility
- **Ribs** local stresses

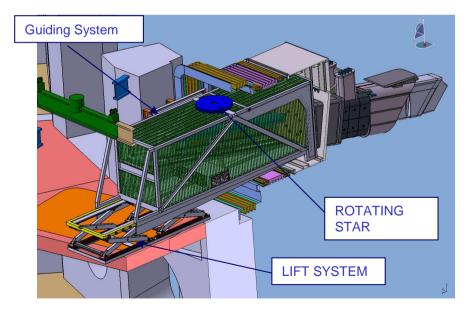


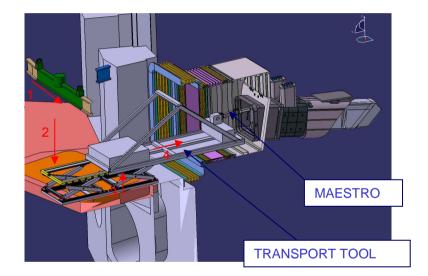
Upper Port Plug BSM

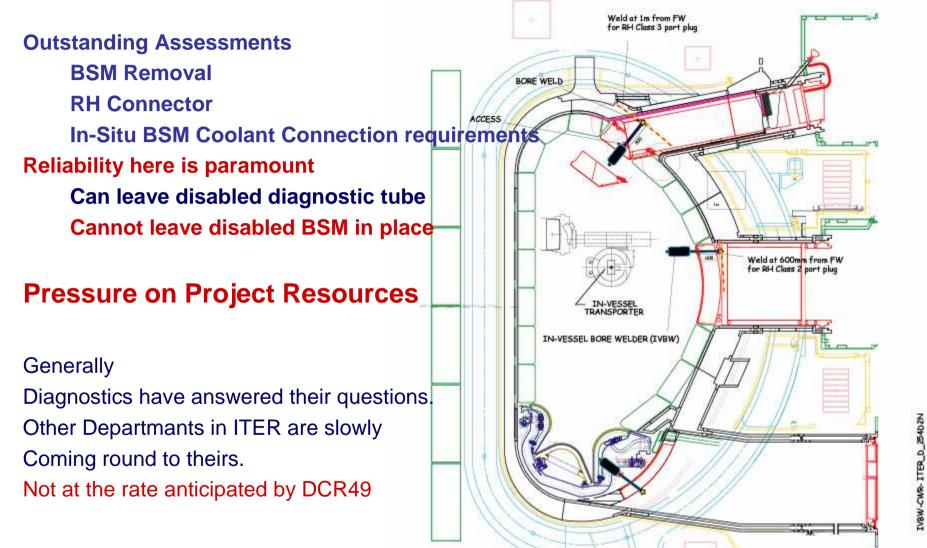




A solution is to make port plug RH Class 3 (leave installed) There are still some RH Class 2 components:


- Diagnostic Windows
- Diagnostic Tube
- BSM



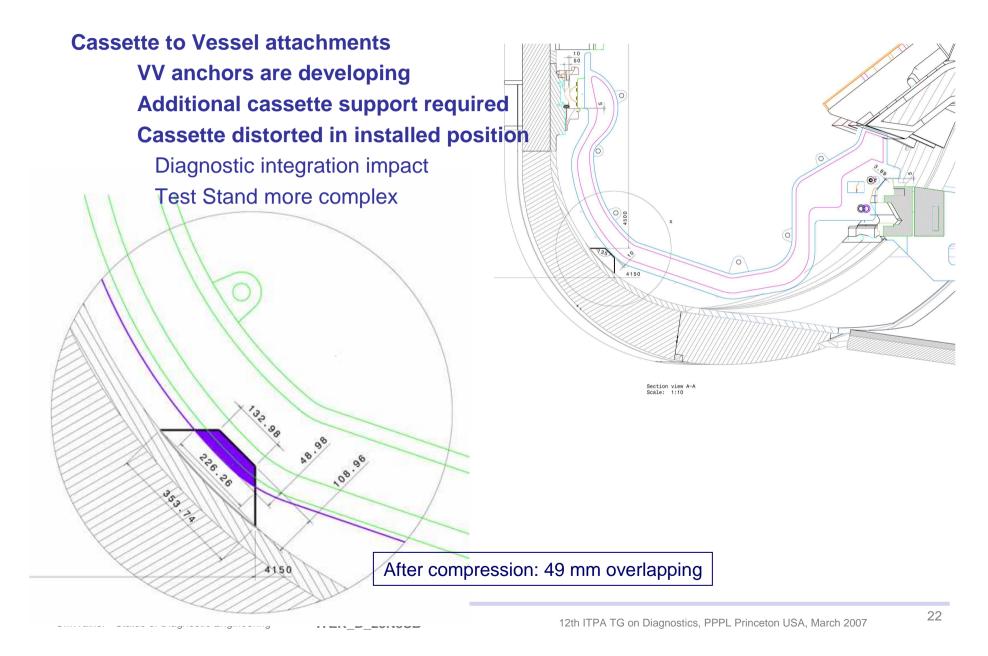


Diagnostic Tube Access NB Cell integration Start of provisional structural analysis of the whole transfer system. Start the feasibility of the upper plug first assembly tool. New design of the lifting system Guiding system on bio-shield **Transport tool for Maestro robot** Cut / Weld cooling system and Unbolt diagnostic tube flange 12th ITPA TG on Diagnostics, PPPL Princeton USA, March 2007

DIVERTOR

PT design teams have worked with the IT Diagnostic and Divertor Groups on:

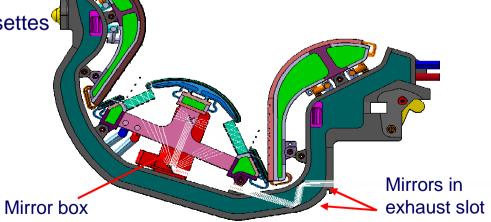
Vertical Neutron Camera Impurity Influx Monitor (Visible / UV) NFM Pressure Gauges X-point TS Thermocouples Magnetics Dust Monitor Divertor-Interferometer IR Thermography


Designs have started for Neutron Activation (foil) Hydrogen Monitor, RGA

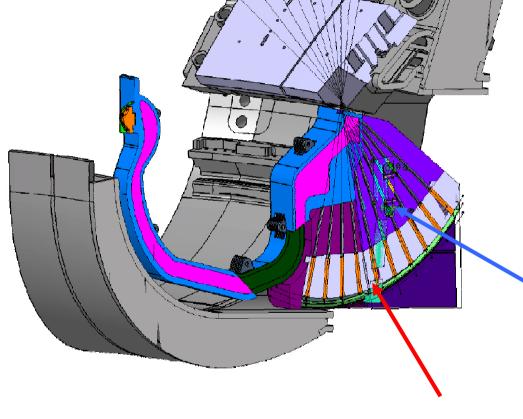
Bolometry

Developments in the following may influence the diagnostic designs.
Gas Injection affects N.Activation, similar solutions are required.
Outboard Rail and Cassette locking developments have a strong interface with Neutron Camera
Divertor Inner Rail with Magnetics
Hardening of Divertor Gaps; TS & Spectroscopy
Neutron transparency – more load in Rack (water cooled now?) all package leaders
In-Vessel Viewing – Gas Discharge Cleaning System Probes

Divertor Cassette



Developing from DDD definition, to accommodate updated divertor cassette Deriving solutions that as are non-intrusive and as common as possible

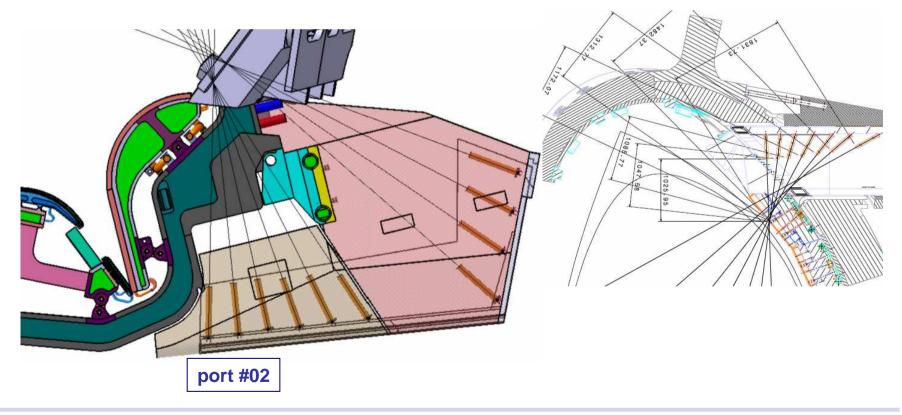

Diagnostics can be classified into 6 broad groups according to the interface required on the Divertor Cassette

- Lower Vertical Camera
- Optic systems viewing the plasma from port through Gaps between Cassettes
- Optic Systems viewing the plasma from Port through top of the Cassette
- Optic Systems using Central Optics under the Dome
- Systems using Waveguides
- Probes installed in Instrumented Cassettes⁴

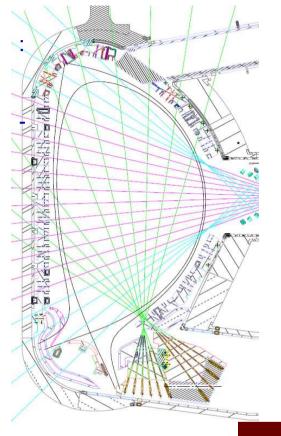
Lower Vertical Neutron Camera

Main Impact:

Slots through Blanket Module Slots through VV Triangular Support Collimators in Divertor Cassette and Central Cassette Outer Rail Interfaces with VV, Divertor Port Alignment of Blanket, Divertor Cassette and Detectors Diagnostic Cooling (Moderator)


> Neutron Collimators

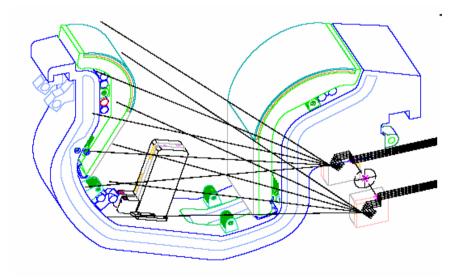
Neutron Detectors


A solution exists, but Large interface with cassette body

Re-evaluation of integration of VNC in upper port was requested

Lower Vertical Neutron Camera

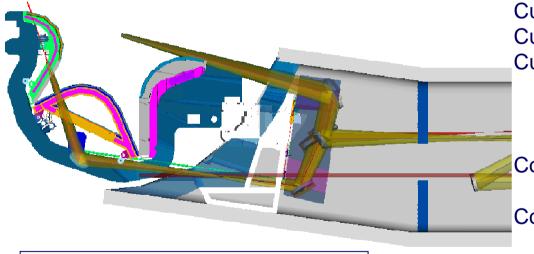
Interfaces to be solved


- Divertor
- Blanket Module
- Triangular Support
- Diagnostic Block in Divertor Port
- Diagnostic block under divertor casette decoupled from divertor
- Alignment requirements between Blanket Module, Divertor Cassette and Diagnostic Block

ITER_D_25N8SB

Optic viewing between Cassettes

Main Divertor Impact:

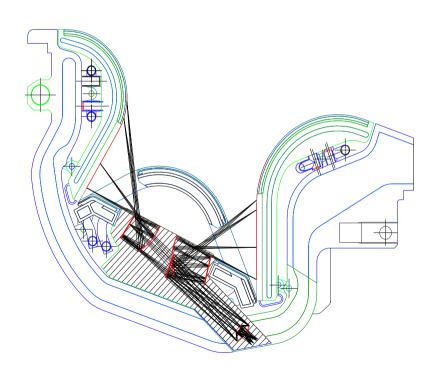

Increase of gaps between cassettes Cut-outs in PFC Cut-outs in Cassette Body

Design Integration Target:

Common definition of gap between cassettes Common definition of cut-outs required in the PFC

E04 - Impurity Monitor Side Views

Main Impact on Divertor :


Cut-outs in PFC Cut-out in Blanket Module # 18 Cut-outs in Cassette Body

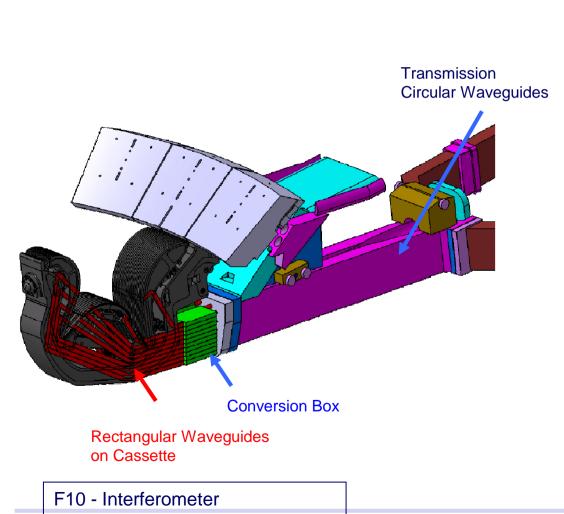
Design Integration Target:

Common definition of gap between cassette / blanket module Common definition of cut-outs

C03 -Divertor X-Point LIDAR TS

G06 –IR Thermography

Main Impact on Divertor: Mirror Mount under the dome between Dome Supports Gaps in liner to ensure Lines of Sights of plasma

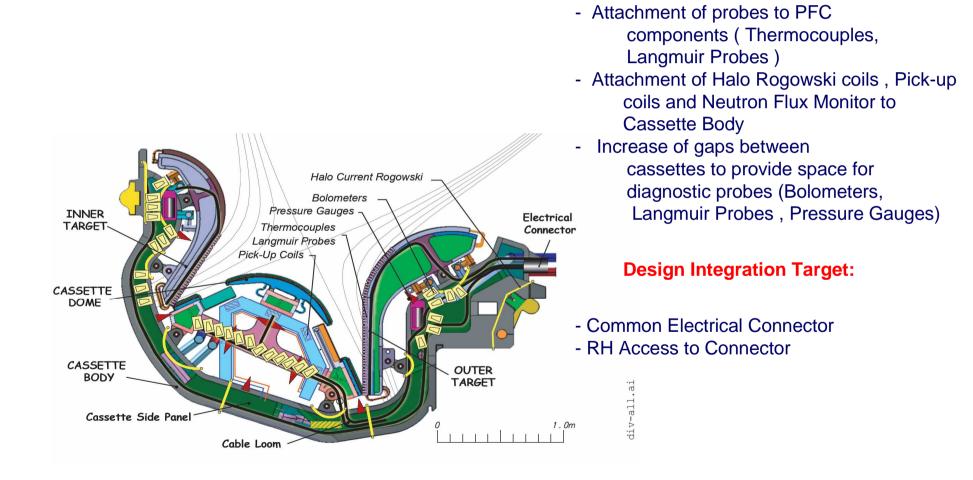

Design Integration Target:

Common

- Mirror Mount concept
- Mirror protection concept: shutters, baffles
- Cassette Body attachment and cooling
- Sight lines through dome liner
- Guiding System

Waveguides Systems

Main Divertor Impact: Increase of gaps between cassettes Attachment of waveguides to Cassette sides Attachment of conversion box to cassette body **Diagnostic cooling** Coupling with Removable **Transmission Waveguides** installed in RH Port


Design Integration Target:

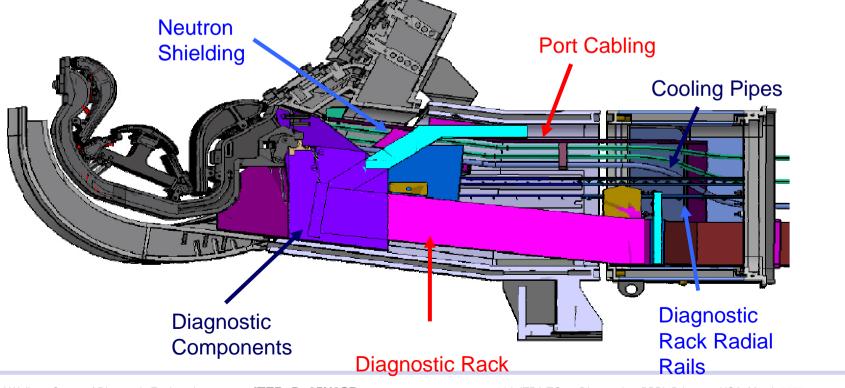
Common

- definition of waveguide concept
- definition of conversion box

Probes in Instrumented Cassettes

Main Divertor Impact:

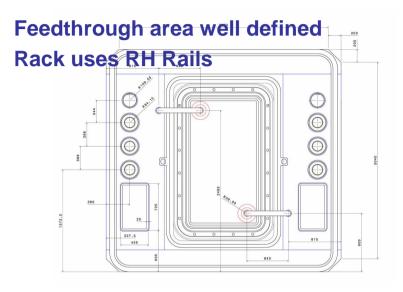
Components in Divertor Port

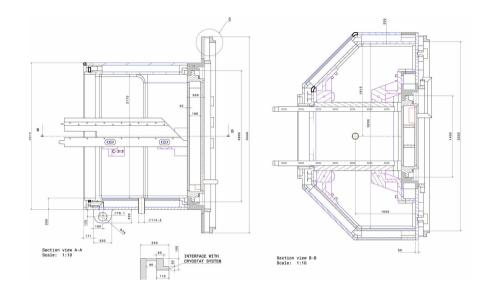

Diagnostic equipment is defined

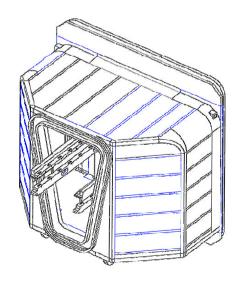
Common Diagnostic Rack Elements

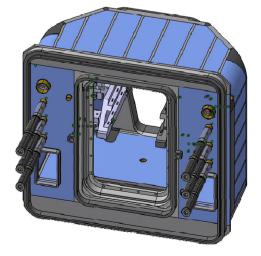
Neutron shielding provided – nuclear heating a generic or diagnostic problem

Accommodate cabling, fuel / gas injection lines, water cooling pipes, RH port interfaces, additional electrical lines , ...


Define common solutions (when possible) for diagnostic port equipment with similar functional requirements

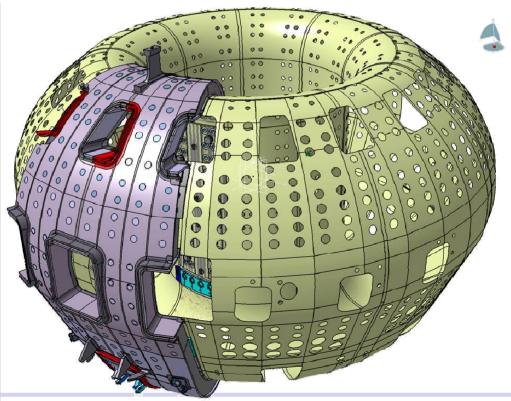





DIVERTOR PORT

T

Vacuum Vessel



Work continues in EU and ITER on

- Magnetic Diagnostics
- & In-Vessel Cabling

An Interface map is required for VV construction and Assembly definition

- Exists- on old VV profile
- A 'skeleton' of the VV is required first

Buildings

Building Interface

Tokamak Building

1.5m larger (E,S,W walls to accommodate RH casks) drawings are now issued. (+1.5 on N would allow 6m NB source move).

Hot Cell

Diagnostic Maintenance and Test Areas - The diagnostic requirements are noted and will be incorporated. Diagnostic input is still required. Test requirements, usage (port plug reliability), etc.

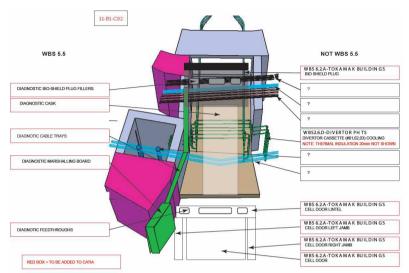
Neutron Test Area - The diagnostic requirements are defined and being incorporated But...the Functionality of Building is being challenged

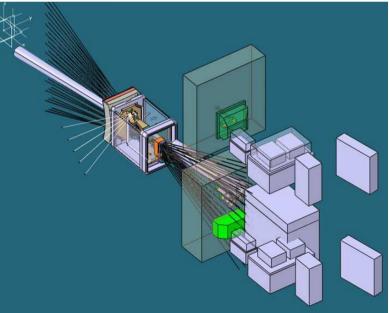
Diagnostic Area

A provisional allocation has been made. **Corroboration by system designers would be valuable.** The building, not the Diagnostic use, is being challenged

Annex Buildings (outside the fence) -starting Lab space ~ for the main diagnostic areas - optical, microwave etc. Workshops for local repairs and modifications etc.

Tokamak Building Port Cells

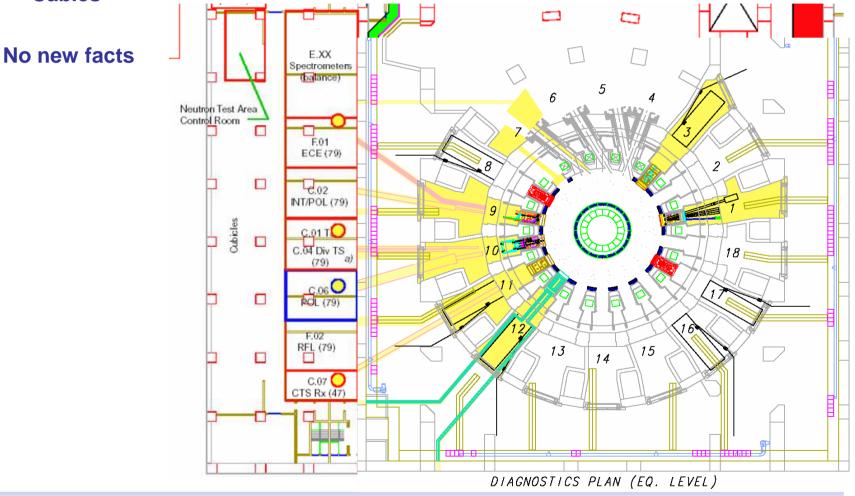

Cell Occupancy

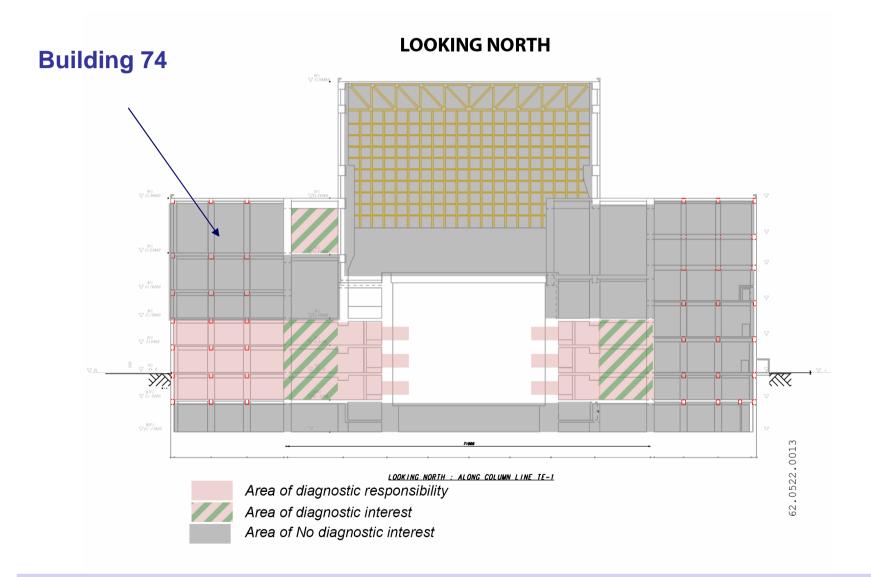

- Port Cell Population
- More diagnostic information needed
- Port Cell Door
 - Defined (40t, 5m, air-lock)
 - Design Pressure 200kPa no design
 - Personnel Door required?

Bio-Shield Plug

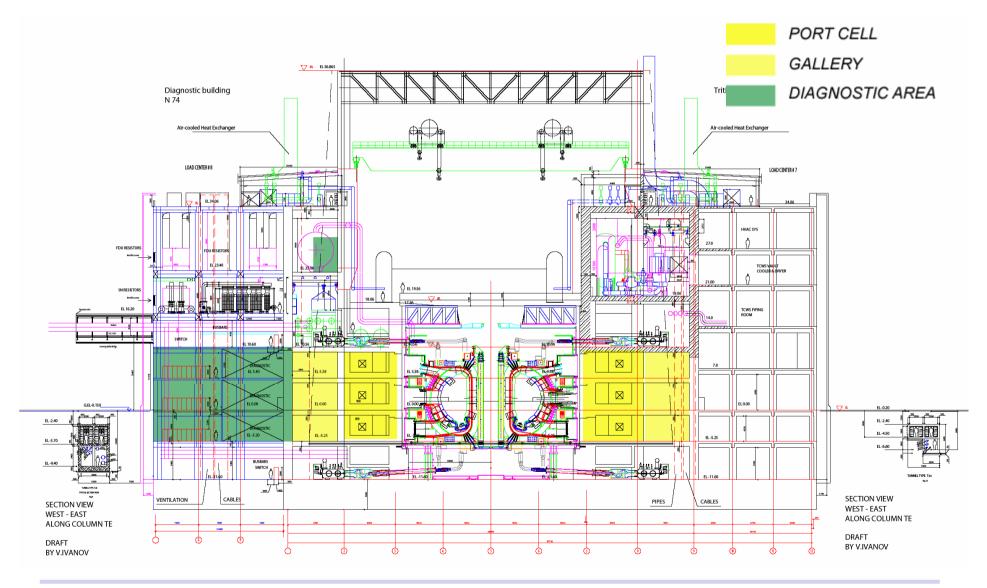
- Segmentation update
- Define masses for installation
- include 100 mm (activated) removable layer

Requirement to incorporate in CATIA model

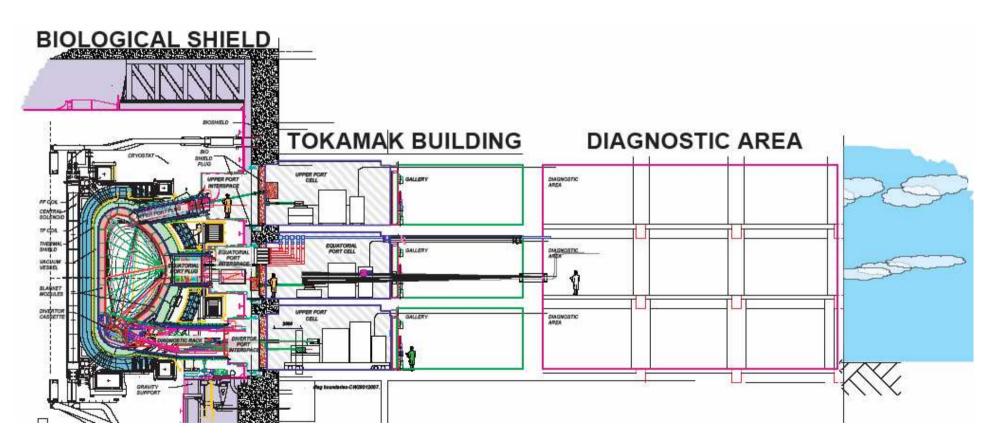



Connection Diagnostic Port Cells to Diagnostic Building

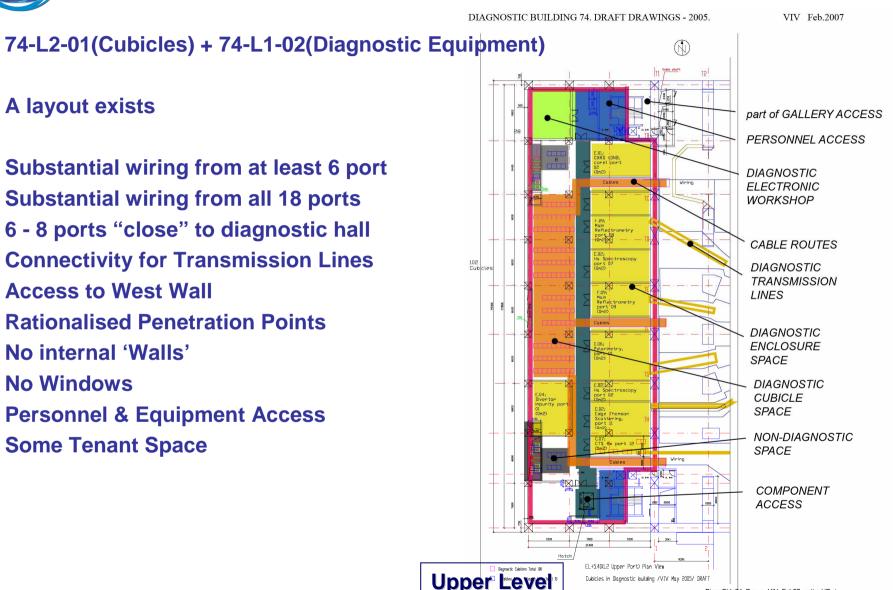
- Transmission Lines
- Cables



Diagnostic Building



Diagnostic Use of Buildings



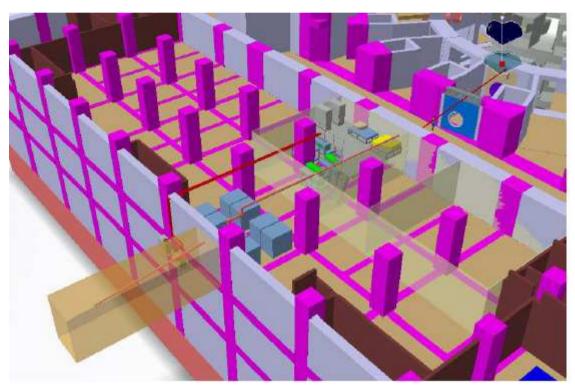
The Diagnostic Area is 3 levels of the Diagnostic Building Zones from Red to Green Safety delibrations are refining requirements

DiagnBldg74_Draws_VIV_Feb07_optim.UP.ai

DDD 5.5.N Diagnostic System Engineering spells out Diagnostic Area requirements **Diagnostic Cubicle Count and Dissipation (ITER_D_2277NR)** Some domestic facilities are ill defined or missing HVAC, Workshops, power, store, toilets! Scheduling has not been addressed. Migration to CATIA is underway, (ITER_D_256KHF) Cubicles Enclosures Building Interfaces Feedthroughs **Divertor Level B1**

Some Diagnostic Designs have addressed Diagnostic Area use e,g, 5.5.3.PP14(EU)C01 LIDAR Thomson Scattering (core) with Eq10

Not in ENOVIA Not yet offered for review Fits allocated space



Of course there is Outstanding Design & Integration work

Penetrations Laser Test Line

possibly typical of development of any diagnostic design

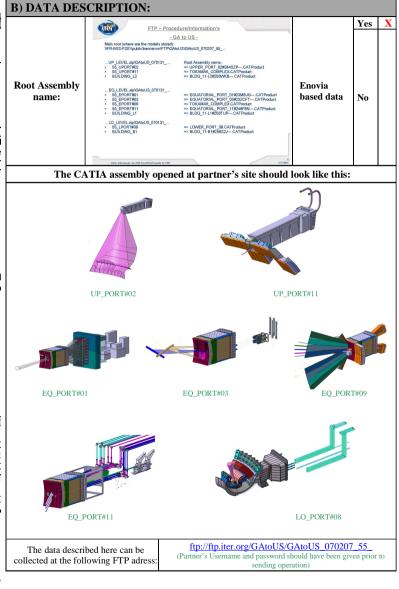
Project Management Procedures

ITER Working Groups for Project Management

Rules being established - prototypical

Representatives of DAs – should be used

Secretary John How	Quality Assurance	Computer Aided Design	C & S Codes and Standards	Information Technology	Planning and Scheduling	Procurement	CODAC (1st Feb 2007)
ITER Coordinator	K.Sowder	<u>E.Martin</u>	J-P Girard	H-W Bartels	Larry Lew	N.Holtkamp (Sec: <u>A.Maas)</u>	<u>J.Lister</u>
China	<u>Y. Zhao</u>	<u>Y. Song</u>	<u>D. Yao</u>	W. Kang	<u>X. Deng</u>	<u>J.Xie</u>	<u>Dr. Jr Luo</u>
India	<u>B. Doshi</u>	<u>R. Prakash</u>	<u>B. Doshi</u>	<u>I.</u> Bandyopad <u>hyay</u>	<u>R. Prakash</u>	<u>S K Mattoo</u>	Y.G.Saxena
Korea (plus deputy)	<u>H. J. Kim</u> (<u>J.H.Han</u>)	<u>N. I. Her</u> (<u>B. C. Kim</u>)	<u>S. I. Lee</u> (<u>H. J. Kim</u>)	<u>I. S. Choi</u>	<u>H. U. Ko</u> (B. C. Kim)	<u>B. S. Lim</u> (<u>H. J. Kim</u>)	H.Jhang
Japan (plus deputy)	<u>M.Higuchi</u> (<u>Y.</u> Neyatani)	<u>K.Koizumi</u>	<u>M.Higuchi</u>	<u>K.Koizumi</u>	<u>K.Koizumi</u>	<u>M.Mori</u> (<u>Y.</u> Neyatani)	<u>Y.Kawano</u>
Russia	<u>V.Muratov</u>	<u>V.Muratov</u>	<u>G.Kalinin</u>	I. <u>Semenov</u>	<u>L. Makarova</u>	<u>V.Belyakov</u>	I.Semenov
USA	<u>M.Skonicki</u>	<u>B. Nelson</u>	<u>B. Nelson</u>	<u>Dan</u> <u>Ciarlette</u>	<u>S. Herron</u>	J. Geouque	
Europe	<u>M.Peyrot</u>	F. Casci	M. Ferrari	<u>K.Thomsen</u>	<u>M. Ferrari</u>	E.Di Pietro	



ITER Management confirms choice of CATIA V5

Three main Design Office Collaboration scheme Scheduled, Synchronous. See "Protocol of Desi Offices of the ITER International Organization au Draft "

DO can host Visiting DA Designers for a few we

CATIA V5 + ENOVIA LCA R16 in production at I1 Moved to CATIA V5 & ENOVIA LCA R17 2006 at Potentially searchable and manipulatab Bookmark required material for Asynch New protocol for CAD transfer to DA

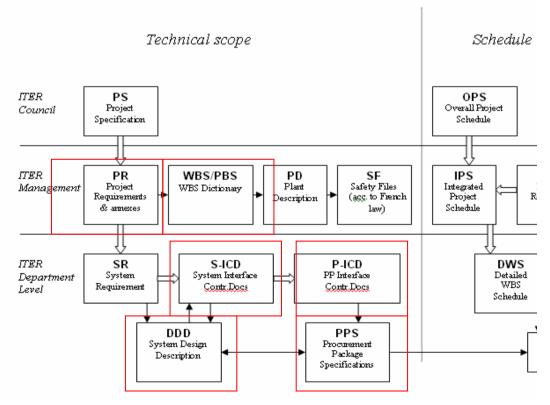
Update of Ongoing Activity coordinated by Design Integration Group

3 primary elements (baselines) define the scope of the project:

- **TECHNICAL SCOPE BASELINE** describes the performance capabilities that the project must provide at the end of the construction phase to achieve the mission need,
- **SCHEDULE BASELINE** that define the time within which the project is to provide the required capabilities, and
- **COST BASELINE** that describes the total cost of providing the required capabilities within the identified schedule.

Problem with current baseline documents are:

- ITER documentation is not adequate to start the construction: design of some systems in the FDR 2001 was scaled from the large ITER, with understanding that additional design work had to be carried out once the decision on construction was taken
- It was only partially kept up to date during the last 5 years
 There were resources to work only on the DDDs of key systems
- Changes from the Design Review must be incorporated Several comments have been raised from the reviewers and industry consultants that have assessed the status of the documentation.

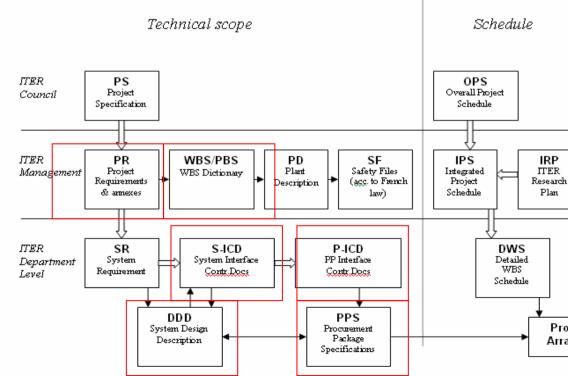

A new Baseline Structure is defined

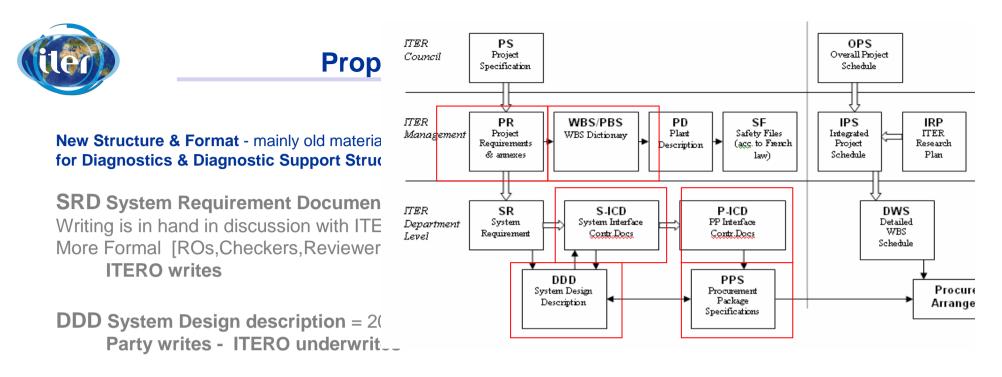
New Structure & Format - mainly old material – to be updated for Diagnostics & Diagnostic Support Structures - most elements are already written

SRD System Requirement Document = <u>DRG2-Chapter 20 Diagnostics</u> (ITER_D_22GP2) with additions Writing is in hand in discussion with ITER Project Office More Formal [ROs,Checkers,Reviewers,Approver, Document Control Manager] ITERO writes

Proposal for 2007 Baseline Structure

1 Scope


2		Functions, Basic Configuration and System Boundaries		
	2.1	System Functions		
	2.2	System Basic Configuration 4		Safety Requirements
	2.3	System Boundaries	4.1	General safety requirements
3		Design Requirements	4.2	Safety functions
	3.1	General requirements	4.3	Safety Importance Classification and seismic classifi
	3.2	System specific requirements		Safety design limits
	3.3	System specific requirements Mechanical requirements (including load combination	$ons)_{45}^{11}$	Monitoring requirements
	3.4	Vacuum requirements and vacuum classifications	4.6	Safety-specific instrumentation
	3.5	Structural requirements	4.7	Safety related testing and inspections
	3.6	Electromagnetic requirements	4.8	Safety related operations and procedures
	3.7	Thermohydraulic requirements	4.9	Occupational safety
	3.8	Electrical requirements	4.10	
	3.9	Nuclear shielding requirements	4.11	
	3.10	Chemical requirements 5		Operation and Maintenance
	3.11	Seismic requirements	5.1	System operation states
	3.12	v 01	5.2	Maintenance class
	3.13	Construction requirements	5.3	Reliability assurance requirements
	3.14	Assembly requirements	5.4	Environment conditions during maintenance
	3.15	Testing requirements		0
	3.16	I&C requirements	5.5	Remote handling requirements
	3.17	Decommissioning requirements	5.6	Short term maintenance requirements
	3.18	Grounding and Insulation requirements	5.7	Long term maintenance requirements
	3.19	Materials requirements	6	Quality Requirements
	3.20	HVAC requirements	6.1	Quality classification
	3.21	Other services 7		Applicable Codes and Standards



New Structure & Format - mainly old material – to be updated for Diagnostics & Diagnostic Support Structures -most elements are already written

SRD System Requirement Document = <u>DRG2-Chapter 20 Diagnostics</u> (ITER_D_22GP2) with additions Writing is in hand in discussion with ITER Project Office More Formal [ROs,Checkers,Reviewers,Approver, Document Control Manager] ITERO writes

DDD System Design description = 2001 DDD Updated as necessary Party writes - ITERO underwrites

 PPS
 Procurement Package Specification = All Elements of the Procurement Package

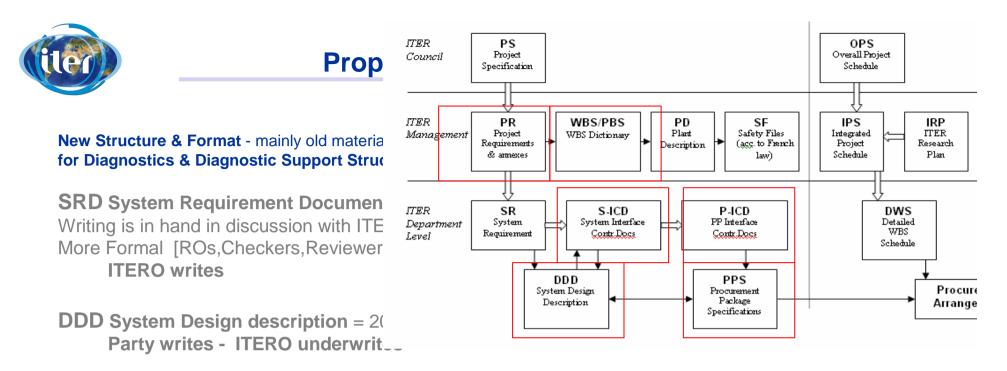
 Diagnostic Specification - Appropriate part of Procurement Package ANNEX 1: Tech Spec

 Party writes - ITERO underwrites

 Port Plug Specification - Port Engineering Task Design Specification Updated for Procurement

 ITERO writes - Port Engineering Task underwrites

 CAD Models & Drawings - at appropriate level of detail


 Diagnostic
 Party writes - ITERO underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Integration
 Party writes - ITERO underwrites

 Schedule Appropriate part of DWS Detailed WBS Schedule
 Party writes coordinated by ITERO

 PPS Procurement Package Specification = All Elements of the Procurement Package

 Diagnostic Specification - Appropriate part of Procurement Package ANNEX 1: Tech Spec

 Party writes - ITERO underwrites

 Port Plug Specification - Port Engineering Task Design Specification Updated for Procurement

 ITERO writes - Port Engineering Task underwrites

 CAD Models & Drawings – at appropriate level of detail

 Diagnostic
 Party writes - ITERO underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Integration
 Party writes - ITERO underwrites

 Schedule Appropriate part of DWS Detailed WBS Schedule
 Party writes coordinated by ITERO

S-ICD System Interface Control Document - New system for Handling Interfaces ITERO writes - Party underwrites

New Structure & Format - mainly old material – to be updated for Diagnostics & Diagnostic Support Structures -most elements are already written

SRD System Requirement Document = <u>DRG2-Chapter 20 Diagnostics</u> (ITER_D_22GP2) with additions Writing is in hand in discussion with ITER Project Office More Formal [ROs,Checkers,Reviewers,Approver, Document Control Manager] ITERO writes

DDD System Design description = 2001 DDD Updated as necessary Party writes - ITERO underwrites

 PPS
 Procurement Package Specification = All Elements of the Procurement Package

 Diagnostic Specification - Appropriate part of Procurement Package ANNEX 1: Tech Spec

 Party writes - ITERO underwrites

 Port Plug Specification - Port Engineering Task Design Specification Updated for Procurement

 ITERO writes - Port Engineering Task underwrites

 CAD Models & Drawings - at appropriate level of detail

 Diagnostic
 Party writes - ITERO underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Port Plug
 ITERO writes - Port Engineering Task underwrites

 Integration
 Party writes - ITERO underwrites

 Schedule Appropriate part of DWS Detailed WBS Schedule
 Party writes coordinated by ITERO

S-ICD System Interface Control Document - New system for Handling Interfaces ITERO writes - Party underwrites

- Integrated Project Schedule IPS
 - Not Yet Correct at the Diagnostic Level, some inconsistencies at VV Assembly Level. However the IPS is not incompatible with Port Plug Schedule of Port Engineering Task.
 - Diagnostic Details, particualry ITER milestones, will be input soon

Diagnostic Procurement Plan

- **Design review of diagnostics: May 07**
- Finalise proposed procurement packaging June 07
- Develop detailed procurement plan for all packages.
- Initiate preparation of procurement packages Sept 07
- Develop detailed design of port plug structure complete Dec 07
 - CAD Effort
 - **Incorporation design developments**
- Diagnostic Procurement Tracking Matrix
 - For internal Diagnostic Division procurement monitoring
 - Defines of milestones towards completion on a scale to 100%.
 - With an objective criterion for each step.
 - Design ready for proc package may mean detailed, or manufacturing, depending on PT or Fund etc

Diagnostic Procurement Tracking Matrix

	0%	5%	100%		
Diagnostic design			Design ready for proc. package		
Diagnostic engineering (portplug etc)		Identified	Design ready for proc. package		
Interfaces		Identified	Design ready for proc. package		
R+D		Identified	Definitive R&D result, report		
IT Package specification		Identified	Agreed with PT		
PT pre-procurement		Voluntary Input to IT design (ITPA, Varenna etc)	PT agrees Proc Spec with IT		
Package procurement		PT accepts procurement contract	Final commissioning It works!		

Overall project objectives, activities and milestones that affect Diagnostics and diagnostic staff (from the IPS)

- Preparation of Preliminary Safety Report
- VV Codes and Standards approved by Regulator
- Execution and completion of Design Review
- Update Baseline Documentation
- Preparation and launch Procurement Packages for early procurement systems
- Development of IPS
- Completion of any necessary supporting R&D

MAIN ACTIVITIES

Interface Work

Identification and definition of Interfaces with Early Procurement Systems

- Magnets design ongoing (EU &ITER)
- Buildings Tokamak Building (Port Cells, Galleries), trnasmission lines & Cabling. Diagnostic Area
- Vacuum Vessel Interface Map, to follow skeleton (needs generating), Triangular Support, Obscured Port.
- Safety Windows, Zones, Port Cell pressures
- NB Cell

Identification and definition of interfaces with All Remaining tokamak systems notably

Blanket – Regular Blanket Cut-outs, BSMs, Special BSM

Develop case for cut-outs in upper blanket modules

B Mod#11 cutout and Upper port plug BSM discussions with Blanket Gp Upper Port Plug BSM with Blkt Gp & EU ECH

- Hot Cell Utilization, functionality, RH, Active Waste, Test Area, Be Area
- Divertor common Generic Interfaces, Diagnostic specials
- CODAC Plant I&C system advancing
- Annex Buildings requirements (Lab & workshop) preliminary
- Steady State Power Supplies (& Cable Provision)

Interface Work

Identification

ITER_D_2	<u> </u>	<u>32V</u>				interface with					
			pack	lead	party	Magnets	Building	Safety	Vessel	DCR 49 implication	cou
VV all	A03	Magnetics	P22		EU	X			X		1
U06	B08(F)	Neutron Activation (encapsulated foil) (1/2)	P4		KO		X	X		X	
U08	F09	Reflectometer (Main Plasma, HFS) gap 6 2pr VV_to	P6	lead	RF			А	X	<u> </u>	
U08 U10	C06	Polarimeter / Interferometer	P8	lead	JA				Λ		
U10 U11	C00 C02	Edge Thomson Scattering	P9	lead	JA						
U11 U17		Reflectometer (Main Plasma, HFS)gap 6 1pr	P9 P10	lead	US						
	F09 B01						X X				
Eq01	B01 B11	B01-Radial Neutron Camera	P11a P11c	lead	EU EU						
Eq01 Eq09	F01	High Resolution Neutron Spectrometer Electron Cyclotron Emission (ECE)	P11c P13	lead	US		X X				
-	-										
Eq10	C01	LIDAR Thomson Scattering	P14	lead	EU		X				1
Eq10	C08	LIDAR Inner Divertor	UnC		UnC		X	*7			1
Eq011	E08	Neutral Particle analyser (NPA)	P15	lead	RF		X	X			1
Eq012	C07	Collective Thomson Scattering (CTS)	UnC		UnC		X		X		1
Lo08	F10	Divertor-Interferometer (g)	P18	lead	US		X				1
Lo08	E10	LIF (c)	Un_C		Un_C		X				1
Lo10	C04	Thomson Scattering (Divertor Outer)(g)	P19	lead	RF		X				
Lo10	C03	X-point TS,Div ne Te (g)	Un-C		Un-C		X				1
Lo14	F04	Reflectometer(g)	P20	lead	F		X				1
Lo14	F05	ECA (divertor)	P20		F		X				1
Lo14	G08	Plate Erosion (c)	Un -C		Un -C		X				1
	N06	Ex-Bioshield_ Electrical Equipment	P31		F		X	X			2
U06	E03	VUV grazing image Spectrometer (x 2)	P4	lead	KO			X		X	2
U06	B08(F)	Neutron Activation (encapsulated foil) (1/2)	P4		KO		Х	Х		X	4
U09	E05	X-ray Crystal Spectroscopy (imaging)	P7	lead	IN			Х			2
Eq011	E08	Neutral Particle analyser (NPA)	P15	lead	RF		X	X			2
VV some	B03	Microfission Chambers	P24		JA			X	X		2
Eq 8&17	B04	Neutron Flux Monitors (ext)	P25		CN			X			
Lo some	G04	RGA	P28		US			X	Х		2
	N10	In-Vessel Diagnostic Services	P30		EU			X	X		2
	N06	Ex-Bioshield_ Electrical Equipment	P31		F		X	X			2
	N07	Window assemblies	P32		F			X			2
		Plasma Position Reflectometry (outb gap 4) 1pr VV									
U01	F03		P1	lead	EU				X		3
U01	F03	Plasma Position Reflectometry (outb gap 5) 1pr Plug	P1	lead	EU				X		3
U08	F09	Reflectometer (Main Plasma, HFS) gap 6 2pr VV_to	P6	lead	RF		X		X		3
U14	F03	Plasma Position Reflectometry Gap6 1pr VV_to Cel	P1	lead	EU				Х		3
Eq09	C05	Toroidal Interferometer/ Polarimeter	P13		US				X		(°)
Eq09	F07	Fast Wave Reflectometry	UnC		UnC				Х		
r - Eq09 us of E	iad ₽07 stic E	ngiSefirXnRay Array (XR D 25N8SB	UnC	1:	UnC	G on Diagn	ostics, PPP	L Princeton	USAXMar	ch 2007	(*)

Port Engineering

- Completion of design of diagnostic support structures for two representative ports (one upper and one mid-plane) to the point where detailed specifications can be determined for each port.
- Complete development of design of a representative port structure at the upper and equatorial levels with solutions demonstrated to the key engineering issues
- About 1 PPY from ITERO plus about 2 PPY from the PTs.

Initiation of Port Engineering Task Force

- Initiate cross party task force to co-ordinate the work in the PTs and the IT in preparation for procurement, construction, and installation and commissioning phases of the diagnostic port-based procurement packages.
- Harmonize and coordinate the work on common elements and especially the development of diagnostic and port-plug components and their integration.
- Track the development of the interfaces (plug/port, diagnostic/plug and package/package (hence party/party))
- Develop methods for transfer of knowledge and experience.

Port Engineering Prototyping

Plan, and if possible initiate, prototyping of some key components and procedures that are needed to confirm feasibility of the solutions adopted.

- lifting/handling of port plug
- port plug flange attachment
- port plug sealing
- BSM attachment
- RH water welds
- Draining and filling tests

Specifications now required

Diagnostic R&D identified

submitted to Project Office for consideration for support through the ITER R&D funds.

DIAGNOSTIC

- Divertor target Langmuir probe prototype
- ECE Hot source
- Prototype magnetic coils
- In-vessel Hall Probes
- Erosion monitor optical transmission prototype
- Advanced Photon and Particle Detector Development ENGINEERING
- In-vessel conduit prototype
- Divertor Cassette connector prototype

Specification now required

Other Activities

Contribute to ITER Preliminary Safety Report

- measurement of dust
- Boundaries & Zoning
- Diagnostic Windows.
 - **ITER Practice for Windows and Non-Metallic Boundaries.**

Contribute to ITER interface work generally.

Design Review

Support other design reviews as needed. Contribute to the efforts to resolve issues related to diagnostics being handled by some of the Working Groups.

- Building
- Safety

Diagnostic Design internal review ITER DIAGNOSTICS: Baseline Design and Readiness for Procurement (ITER_D_25DBC6 v1.2)

Resolution of all diagnostic related issues

Procurement Packaging

Develop detailed procurement plan for all packages.

Prepare and place procurement packages

Scheduling

IPS, VV Assembly, Diagnostic & Party Schedules

CONCLUSIONS

Integration and Diagnostic Engineering work progresses in all areas.

IT & PT system designers are active on relevant work.

Inevitably there is a resource limitation.

Project priority and urgency supersede Diagnostic Procurement needs in many areas.

Assigning effort to the funded systems will be difficult.

Diagnostic package and system procurers must be mindful of their interests and be active in promoting them.

EQUATORIAL PORT SUMMARY

Not much design change of basic diagnostic port plug structure

Still outstanding sealing & BSM attachment Interfaces

ITER definition is overdue

Diagnostic integration develops in ITERO & Parties

UPPER PORT SUMMARY

Significant development in Port Plug Structure Definition (though CAD model required)

Handling & Sealing – still too many open issues/options (2 /5)

Mainly from NB cell requirements - standard solution is not essential

Providing diagnotic ports above NB Cell looks feasible, Tube insertion scheme is advanced

In-Vessel BSM removal - is not well developed, not demonstrated yet

DIVERTOR

Much Design refinement Aim to define and match a Common Cassette Diagnostic Designs needed for this to develop further Generic design points are being dealt within ITERO

VACUUM VESSEL Interface definition is overdue

BUILDINGS

Testing Facility functionality is being challenged Diagnost Area looks well founded Port Cells are known but not well recorded

PROJECT MANAGEMENT

Each PT has a member in each Working Group for review and for Procurement Management. These should be used as much as possible to a) familiarise them with diagnostic specialities and b) spread the burden of information exchange out of the IT Diagnostic

b) spread the burden of information exchange out of the IT Diagnostic Division

There are any new (prototypical)procedures Many new people (ITERO from DDDG down & in Party teams)