"Alpha Knock-On Measurements on ITER Using Neutron Activation"

R. K. Fisher General Atomics

12th ITPA Topical Group Meeting on

Diagnostics

March 26 to April 1, 2007

Alpha Collisions With Fuel Ions Creates Knock-On Tail

GENERAL ATOMICS

Presence of alphas creates high energy D, T ion tails

Energetic ion tails produce tail on DT neutron distribution

Knock-On Neutron Tail Has Been Experimentally Observed on JET Using MPR and agrees with predictions

GENERAL ATOMICS

Fig. 2 from J. Kallne, et.al., Phys. Rev. Lett. <u>85</u>, 1246 (2000)

Knock-On Measurements Using Neutron Activation

GENERAL ATOMICS

* Activation targets with different threshold energies between ~15 and 20 MeV would measure the knock-on neutron tail spectrum, and yield information on the energy spectrum of the confined alphas in ITER

- yields information on the confined alphas in the hot plasma core, where most of the neutrons are emitted
- the targets can be exposed to the very high neutron flux
 (>10¹³n/cm²/sec) near the first wall of ITER, allowing signal levels large enough to allow alpha particle physics studies

Neutron Activation vs. Bubble Detectors, Proton Tracks

GENERAL ATOMICS

Why am I now advocating neutron activation rather than earlier suggestions of bubble neutron detectors and proton tracks in nuclear emulsions?

• neutron activation looks far more straightforward than the other two approaches

- bubble neutron detectors require temperature control to ~ 0.1 deg C; for single gas detectors, need ~ 5 detectors at 5 different temperatures

- avoids need to measure the lengths of thousands of recoil proton tracks in emulsion approach

• our initial early tests on TFTR were unsuccessful, and problem of background decays due to even parts per billion of impurities in activation target appeared insurmountable; but now realize that

- careful selection of activation targets and the use of radiochemistry techniques to reduce the background decays should allow knock-on measurements using neutron activation

Advantages and Limitations of Activation Approach

GENERAL ATOMICS

<u>Pros</u>

• <u>Large signal levels</u> - The targets can be exposed to the very high neutron flux (>10¹³n/cm²/sec) near the first wall of ITER, allowing signal levels large enough to allow alpha particle physics studies

• <u>Relatively easy to implement on</u> <u>ITER and hardware is robust</u>

- for solid targets, use a pneumatic target transfer system similar to that used on TFTR and JET

- for gas and liquid targets, can use a valve and pumping system, all moving parts would be outside biological shield

<u>Cons</u>

• <u>Limited time resolution</u> –Results are integrated over target exposure times (~ seconds), although any knock-on approach is inherently limited to time scale for fast ion slowing-down (~ few seconds in ITER)

 <u>Delayed results</u> - long half-lives of some of the activation products will delay availability of data

• <u>Background reactions</u> between the much larger flux of DT neutrons below the desired energy threshold and other isotopes or with impurities in the activation target will require careful selection and handling of the target

Finding Suitable Threshold Activation Targets Is Difficult

GENERAL ATOMICS

• "Background" reactions between the much larger flux of DT neutrons below the desired energy threshold and all of the isotopes and any impurities present in the activation target will require careful selection and handling of the targets

- there are a large number of possible neutron reactions, including (n,2n) (n,3n) (n,p) (n,d) (n,t) (n,He^3) (n,α) (n,n') (n,n+p) (n,n+d) (n,n+t) $(n,n+\alpha)$ reactions, that can create "background" decay products that will prevent observation of the knock-on tail induced "signal" reactions

- impurity concentrations as low as parts per billion can also prevent observation of the knock-on signal

• Initial studies of some of the possible targets are presented that illustrate techniques that can be employed to reduce these background decays

Activation Targets With Energy Thresholds of 15 - 20 MeV

Target Reaction	Threshold Energy (MeV)	Decay Half-Life	Decay Modes	Gamma Energies
Au ¹⁹⁷ (n, 3n) Au ^{195m}	14.79	30.6 sec	ІТ	0.20, 0.262 MeV
Au ¹⁹⁷ (n, 3n) Au ¹⁹⁵	14.79	183 days	EC	0.10 MeV
S ³² (n, 2n) S ³¹	15.52	2.6 sec	β +	0.511 MeV
Ne ²⁰ (n, t) F ¹⁸	15.54	110 min	β ⁺, EC	0.511, 1.04 MeV
Ca ⁴⁰ (n, 2n) Ca ³⁹	16.0	0.86 sec	β +	0.511 MeV
Be ⁹ (n, d)Li ⁸	16.31	.84 sec	β-	~13 MeV β ⁻ directly
O ¹⁶ (n, 2n) O ¹⁵	16.65	2 min	β +	0.511 MeV
La ¹³⁸ (n, 3n) La ¹³⁶	16.75	9.5 min	ΕC , β ⁺	0.511, 0.83, 1.32, 2.13 MeV

Mg ²⁴ (n, 2n) Mg ²³	17.2	11.3 sec	β +	0.511 MeV
Pr ¹⁴¹ (n, 3n) Pr ¹³⁹	17.46	4.5 hrs	ΕС, β ⁺	1.35, 1.63 MeV
Ne ²⁰ (n, 2p) O ¹⁹	17.74	27 sec	β ⁺, EC	0.2, 1.55, 2.6, 4.2 MeV
Si ²⁸ (n, 2n) Si ²⁷	17.8	4.1 sec	β +	0.511 MeV
C ¹² (n, 2n) C ¹¹	20.3	20.4 min	β ⁺, EC	0.511 MeV

- Impurities in the activation target are a significant concern:
 - the impurity activation crosssections can be 100 to 1000 times larger since their threshold energies will be well below 14 MeV
 - the neutron flux for impurity activation is 10^3 to 10^6 times larger than the small fraction of neutrons above the knockon signal threshold
- Impurity concentrations in the activation target at parts per million to even parts per billion can lead to problematic background signals

Research grade Ne gas has < 1 ppm of N_2 and other impurities

Techniques Available To Overcome Background Reactions

Method	Examples
Choose a signal reaction with a long half-life and wait for the shorter lived backgrounds to decay away	110 min for Ne ²⁰ (n,t)F ¹⁸ 4.4 hrs for Pr ¹⁴¹ (n,3n)Pr ¹³⁹
 Use coincident detection to detect 511 keV annihilation gammas from β+ decay 	Ne ²⁰ (n,t)F ¹⁸ Pr ¹⁴¹ (n,3n)Pr ¹³⁹ La ¹³⁸ (n,3n)Pr ¹³⁶
• Reduce the low energy gamma backgrounds using thin absorbers	Pr ¹⁴¹ (n,3n)Pr ¹³⁹ La ¹³⁸ (n,3n)Pr ¹³⁶
Choose a target with a high energy gamma decay so it can be observed in a much higher flux of lower energy background gammas	3.51 MeV for S ³² (n,2n)S ³¹
• Use chemistry after exposure to remove elements causing background, and increase SNR e.g. remove N ¹³ from H ₂ O using ion exchange resin beds	O ¹⁶ (n,2n)O ¹⁵ signal O ¹⁶ (p,α)N ¹³ background

GENERAL ATOMICS

* Expected decay signal dN_{decay} /dt from an activation target containing N_a atoms of Ne²⁰ and exposed to a neutron fluence of Φ_n is

$$dN_{decay}/dt = N_a \sigma_{eff} \Phi_n / \tau_{decay}$$

where $\sigma_{eff} = \int df(E)/dE \sigma(E) dE$; with df(E)/dE = fraction of DT neutrons in the knock on tail times and $\sigma(E)$ is the activation cross-section

dN_{decay} /dt ~ 0.1 decays/sec or
 ~1,150 total decays due to Ne²⁰(n,t) reactions in a 1 atm. 16 cm³ target exposed for 100 sec to the ITER n-flux; much larger signals possible with high pressure targets

Sufficiently High Purity Neon Is Commercially Available

ADVANCE	ED SPECIALTY GASES	N2		< 4 ppm	
Abvance	D SFECIALIT GASES	02		< 1 ppm	
	Home Shipping Contact Form e-mail	Arg	on	< 1 ppm	
categories	Neon Gas Ne	СО		< 0.5 ppm	
Home Sulfur Hexafluoride Halocarbon Gases	A colorless, odorless, nontoxic, nonflammable gas. Shipped as a compressed gas.		2	< 0.5 ppm	
Pure Gases	Technical Data		-		
Rare Gases	Formula: Ne Melaaniaa Welahti 2018		`		
Xenon Gas	Specific Volume: 19.3 6 ³ /Lb.		J	< 0.1 ppm	
Krypton Gas	Bolling Point: 411° F				
Neon Gas	Vapor Pressure: N/A	H20)	< 1 nnm	
Ammonia	Shipping Information		/		
Hydrogen Chloride	DOT Name: Neon, compressed				
Halocarbon 14	Hazard Class: 2.2				
Halocarbon 23	CAS #: 7440-01-9				
Halocarbon 32					
Halocarbon 116	Product Information				
Halocarbon 125		Largest s	ource	эт раскугоцг	Ia
Halocation 218	Typical Specifications: 99.999%	ia N114/m 2	->> <i>1</i> 3	high ig	
SF6		15 IN (11,2)	TIJIN ⁻ WI		
SF6 Specifications		pogligible	o 70 m	ninutae aftar	,
NF3	N2 < 4 ppm O2 < 1 ppm	negigibie	;~7011	mules aller	
SF6 Lab Services	Argon <1 ppm	ovposura	due to	much longe	r
SF6 Leak Detection	CO < 0.5 ppm	cxposure		muchionge	
SF6 Recycling	THC < 0.1 ppm	half_life o	f No20/,	t) F ¹⁸ signal	
Combined Services	H2O < 1 ppm			i, cji siyilal	
Cvinders					

Overcoming Background Reactions in Ne²⁰(n,t) Targets

GENERAL ATOMICS

Reaction	Neutron Threshold	Half- Life Decay	Decay Gamma Energies	Initial Decay Rate from 16cm ³ target at 1 atm. exposed for 100 sec on ITER
Ne ²⁰ (n,t)F ¹⁸ Signal	15.54 MeV	110 min β+, EC	0.511 MeV (100%)	0.12/sec signal can be increased by using larger high-pressure target
Ne ²⁰ (n,p)F ²⁰ Background	6.55 MeV	11 sec β-	1.63 MeV (100%)	3.4 [.] 10 ¹¹ /sec but negligible after 7min
N ¹⁴ (n,2n)N ¹³ Impurity	11.31 MeV	9.5 min β+	0.511 MeV (100%)	9 /sec at 1 ppm N ₂ but negligible after 1 hr

• The 0.511 MeV gamma rays should be observable based on the longer lifetime of the signal decay compared to any of the expected background decays

- the 110 min half-life will require several hours to analyze the data, delaying availability of the results

Possible Approaches to Ne²⁰(n,t) Activation on ITER

GENERAL ATOMICS

Can use gas-filled capsule "rabbit" in a pneumatic transport system similar to that used on JET and TFTR

- allows larger exposure chamber and hence larger signals
- avoids background gammas from activation of transport capsule
- no moving parts inside ITER; no "jammed" transport capsules
- Can measure ratio of Ne²⁰(n,t) to Ne²⁰(n,p) activation to determine fraction of neutrons in alpha knock-on tail

GENERAL ATOMICS

* Expected decay signal dN_{decay} /dt from an activation target containing N_a atoms of O¹⁶ and exposed to a neutron fluence of Φ_n is

$$dN_{decay}/dt = N_a \sigma_{eff} \Phi_n / \tau_{decay}$$

where $\sigma_{eff} = \int df(E)/dE \sigma(E) dE$; with df(E)/dE = fraction of DT neutrons in the knock on tail times and $\sigma(E)$ is the activation cross-section

Overcoming Background Reactions in O¹⁶(n,2n) Targets

GENERAL ATOMICS

Reaction	Neutron Threshold	Half- Life Decay	Decay Gamma Energies	Initial Decay Rate from 100 gm target exposed for 10 sec on ITER
O ¹⁶ (n,2n)O ¹⁵ Signal	16.7 MeV	<mark>2 min</mark> β+	0.511 MeV (100%)	7 [.] 10 ³ /sec
O ¹⁶ (n,p)N ¹⁶ Background	11 MeV	7 sec β-	6.13 MeV (68%)	~10 ¹³ /sec but negligible after 3 min
O ¹⁶ (p,α)N ¹³ Background (water target)	5.6 MeV	10 min β+	0.511 MeV (100%)	10 ⁷ /sec must reduce using chemistry

• The 0.511 MeV gamma rays should be observable based on the longer lifetime of the signal decay compared to the O¹⁶(n,p)N¹⁶ background

• Ultrapure water (semiconductor industry) avoids impurity backgrounds

- but n-p scattering in H_2O target creates proton-induced background which requires removal of N^{13} using ion exchange resin beds after n-exposure

Summary and Conclusions

GENERAL ATOMICS

• Knock-on measurements can provide important information on the confinement and slowing-down of energetic confined alphas in ITER

• Measurement of the energetic neutron tail will yield information on the alpha physics in the hot plasma core where the neutron emission is largest

• Neutron activation measurements with energy thresholds between 15.5 and 20 MeV look attractive for measuring the size and shape of the alpha knock-on tail

- targets exposed to the high neutron flux (>10¹³n/cm²/sec) near the first wall of ITER should provide signal levels large enough to allow alpha particle physics studies

- background reactions between the much larger flux of neutrons below the desired energy threshold and the isotopes and any impurities in the activation target will require careful selection and handling of the targets

- initial studies of some candidate targets are presented that illustrate techniques that can be employed to reduce these background decays

Possible Approaches to ITER Knock-On Diagnostics

<u>Approach</u>	<u>Advantages</u>	<u>Disadvantages</u>
Magnetic Proton Recoil Spectrometer	DT n-tail observed on JET; proven technique	small signals in ITER unless allowed large aperture
Neutron Threshold Activation	<i>larger signals; no below threshold response</i>	<i>lack of time resolution; need high purity targets</i>
Bubble Neutron Detectors	larger signals using new high efficiency detectors	need for accurate temperature control
Proton Tracks in Emulsions	larger signals; no below threshold response	lack of time resolution; many tracks to analyze
Passive CX Neutral Spectroscopy	K-O deuterium ion tail observed on JET	line integral measurement; don't know source profile
CX Neutrals Using 1 MeV Beams	spatial profile possible?	need small observation angle w.r.t. beam?