

Columbia L

MHD, disruptions, and control on NSTX - status and plans

J. Menard, D. Gates Princeton Plasma Physics Lab S. Sabbagh Columbia University Mike Walker General Atomics F. Levinton Nova Photonics and the NSTX Research Team

Task Group Meeting on MHD, Disruptions, and Control

> November 8-10, 2004 Lisbon, Portugal

Overview

- NSTX research can contribute to many issues relevant to the M, D, & C task group
- This presentation contains content on:
 - Resistive wall mode physics
 - Internal disruptions and flow damping
 - Locked modes and error fields
 - Plasma control and modeling
- NSTX had MSE for first time during last run
 - 4 core channels, and only for last few weeks of run
 - Initial reconstructions of q_0 , q_{min} consistent with MHD signatures
 - 14 channels next year \rightarrow well constrained q(ψ) profile
 - Very challenging measurement at $B_T = 0.3T$

RWM physics

<u>Wall stabilization physics understanding is key</u> to sustained plasma operation at maximum β

Physics of sustained stabilization is applicable to ITER

Theory provides framework for wall stabilization study

This talk: Resistive Wall Mode physics

- RWM toroidal mode spectrum
- Critical rotation frequency, Ω_{crit}
- Toroidal rotation damping
- Resonant field amplification (RFA)
- Active stabilization system design

Theory

- Ideal MHD stability DCON (Glasser)
- Drift kinetic theory (Bondeson Chu)
- RWM dynamics (Fitzpatrick Aydemir)

Unstable RWM dynamics follow theory

- Unstable n=1-3 RWM observed
 - □ ideal no-wall unstable at high β_N
 - n > 1 theoretically less stable at low A
- F-A theory / experiment show
 - mode rotation can occur during growth
 - growth rate, rotation frequency ~ $1/\tau_{wall}$
 - << edge Ω_{ϕ} > 1 kHz
 - RWM phase velocity follows plasma flow
 - n=1 phase velocity not constant due to error field

Low frequency tearing modes absent

Camera shows scale/asymmetry of theoretical RWM

Before RWM activity

- Visible light emission is toroidally asymmetric during RWM
- DCON theory computation displays mode
 - uses experimental equilibrium reconstruction
 - \Box includes *n* = 1 3 mode spectrum
 - uses relative amplitude / phase of n spectrum measured by RWM sensors

Experimental Ω_{crit} follows Bondeson-Chu theory

Phys. Plasmas 8 (1996) 3013

- Experimental Ω_{crit}
 - □ stabilized profiles: $\beta > \beta_N^{no-wall}$ (DCON)
 - profiles not stabilized cannot maintain $\beta > \beta_N^{no-wall}$
 - □ regions separated by $\omega_{\phi}/\omega_{A} = 1/(4q^{2})$

Drift Kinetic Theory

- Trapped particle effects significantly weaken stabilizing ion Landau damping
- Toroidal inertia enhancement more important
 - Alfven wave dissipation yields $\Omega_{crit} = \omega_A/(4q^2)$

Ω_{crit} follows F-A theory with neoclassical viscosity

Plasma rotation damping described by NTV theory

 \Box AC and pulsed n = 1 field

- RFA increase consistent with DIII-D
- Stable RWM damping rate of 300s⁻¹ measured

Initial RWM stabilization coils

Sensors

Completed coils will be used to suppress RFA, stabilize RWM, sustain high β

RWM stabilization system being installed for 2005 run

- RWM sensor array used in 2004 experiments
- 6 B_r coils now installed on NSTX
 - Pre-programmed capability in 2005 for RFA suppression / MHD spectroscopy experiments
- 3-channel switching power amplifier (SPA) on-site
- Real-time mode detection and control algorithm development in 2005 for feedback experiments

Physics design (VALEN code)

<u>Wall stabilization research at low aspect ratio</u> <u>illuminates key physics for general high β operation</u>

- Plasma $\beta_t = 39\%$, $\beta_N = 6.8$, $\beta_N / I_i = 11$ reached; $\beta_N / \beta_N^{no-wall} > 1.3$
- Unstable n = 1-3 RWMs measured (n > 1 prominent at low A)
- Critical rotation frequency ~ ω_A/q² strongly influenced by toroidal inertia enhancement (prominent at low A)
- Rapid, global plasma rotation damping mechanism associated with neoclassical toroidal viscosity
- Resonant field amplification of stable RWM increases with increasing β_N (similar to higher A)
- An active RWM stabilization system is being implemented in 2005
- RWM active stabilization design studies show that significant increase to $\beta_N \sim 5$ might be achieved and sustained in ITER

Internal kink mode dynamics

Motivation

- Internal kink can limit β in highest- β_T shots of NSTX
 - Highest β_T shots typically have high I_P/aB_T and low q_0
 - 1/1 modes often saturate in amplitude
 - Cyclic sawtooth oscillations are rare at high- β
 - Modes degrade fast-ion & thermal confinement + rotation
 - Effect of mode ranges from benign to disruptive
- Want to improve understanding of:
 - Possible saturation mechanisms for 1/1 mode
 - Mechanism must be strong during non-linear phase of evolution
 - Fast ion, sheared flow, island pressure, and diamagnetic effects
 - Plasma rotation flattening and damping caused by mode
 - Important for shots that disrupt due to presence of 1/1 mode

Highest β shots obtained despite large 1/1 modes

Saturation mechanisms studied with M3D code

(W. Park, et al., Nucl. Fus. 43 (2003) 483.)

 \Rightarrow saturation process will be acting on subsequent non-linear state

Saturated state with higher p in island

Possible mechanisms:

- (1) Sufficient source rate and viscosity to *maintain sheared flow with island*
 - Requires slow reconnection rate
 - Robust, experimentally possible
- (2) Following reconnection, island develops with *p* highest inside island
 - Mechanism is robust, not easily obtained

(3) Fast particles, 2-fluid - *being studied now*

- Fast particles initially lost/diffused at onset
- Diamagnetic flow potentially important
- Rotational shear and 2-fluid effects appear most relevant

M3D: Sheared-flow reduces growth rate by factor of 2-3

• Possible because $\gamma_{shear} \sim \Omega_{rotation}$ can be of > γ_{linear}

Simulated SXR signals

- In experiment, the NBI power is held roughly fixed
- In M3D, with a <u>fixed momentum source rate</u>, the v_{\u03c6} and p profiles <u>flatten</u> inside the island, reconnection <u>still</u> occurs (saturated state rare)

Rotation data \Rightarrow shear-flow correlates with saturation

Kinetic profiles *inconsistent* with *p* peaking inside island

Fast ion stabilization likely not aiding saturation

 Neutron rate drops significantly at mode onset and during saturation

- NPA shows most energetic ions are rapidly depleted during mode growth
- Fast ion population from 20-80keV reduced by factor of 3-5 during saturation phase ⇒ **likely reduction in possible stabilizing effect of trapped fast ions**
- Could reduced core β_P keep plasma near marginal stability ⇒ saturation?

SXR inversion aids analysis of mode evolution

SXR data consistent with incomplete reconnection

Non-linear diamagnetic effects may aid 1/1 saturation

- High $\beta \Rightarrow$ increased $\omega_{*i} / \omega_A \propto \beta_i A \delta_i / a \longleftarrow A \otimes$
- Displacement of plasma core by island can enhance local pressure gradient and magnetic shear in reconnection region:
 - Quasilinear stability criterion with ω_{*e} = 0:

ROGERS, B. and ZAKHAROV, L., Phys. Plasmas 2 (1995) 3420.

$$\alpha \omega_{*i} \tau_A > 2\sqrt{(\gamma_0 \tau_A/\bar{q}')^2 + (\bar{q}'q')^2(\rho_s^2 + 5d_e^2)/2}.$$

$$\alpha = 1 + 2\chi^2 \qquad \bar{q}' = 1 + 6\chi^2 \qquad \chi = \xi_0 / 2\pi \lambda_h$$

- $-\gamma_0$ = ideal MHD linear growth rate
- ω_{*_i} = ion diamagnetic frequency
- $-\xi_0$ = radial displacement of magnetic axis
- $-\lambda_h$ = ideal mode layer width
- $-\rho_s$ = ion-sound Larmor radius
- d_e = collisionless electron skin depth
- \$ = normalized shear = r dq/dr

Significant non-linear stabilization possible

- Inclusion of electron diamagnetism important
- Shear parameter $\hat{s} \approx 0.15$ allows $\xi_0 / r_{q=1} \approx 0.5$

A = R_0/a = plasma aspect ratio δ_i = ion skin depth, a = minor radius

DNSTX

Operational and diagnostic upgrades have improved understanding of role of 1/1 mode in β and Ω_{ϕ} collapse

This run year:

- Early H-mode + high $\kappa \le 2.6$ to raise q and lengthen pulse
- Achieved long 1.2MA pulses with **peak** $\beta_T \leq 40\%$ in recent experiments (34% TRANSP)
 - Highest β "confirmed" by kinetics thus far (112600)
 - Improved resolution (in R, t) charge exchange diagnostic
 - Internal RWM sensors
- Why does collapse occur?

SXR indicates coupled 1/1 and 2/1 modes during disruption of this high- β discharge

Rotation profile decays with 2/1 island locked to local fluid Ω_{ϕ}

2/1 mode phase-locks with core 1/1 mode, and core mode apparently flattens rotation profile...

- Total rotation damping rate T_{damping} is sum of multiple effects:
 - Neoclassical Toroidal Viscous (NTV) differential torque from 1/1 mode
 - Entrainment of plasma mass inside 2/1 island (T_{EM} small)
 - Fluid viscosity outside islands

Internal sensors indicate unstable RWM not present in early phase of rotation collapse

Summary of internal kink dynamics

- Highest β_T shots in NSTX can be limited by 1/1 modes
- Modes often saturated for $\tau \gg \tau_{growth}$, high- β sawteeth rare
- Modes degrade fast-ion & thermal confinement + rotation
- Sheared flow and diamagnetic effects most likely suspects in explaining non-linear mode saturation
- Core Ω_{ϕ} flattening consistent with 1/1 mode NTV damping
- Coupling to other modes at high β can cause global rotation collapse and lead to plasma disruption

Locked modes and error fields

Locked-mode control studies during I_P ramp-up

- Mode locking most problematic during I_P ramp-up at low TF = 3kG
 - Large structural currents during ramp \approx 0.1-0.5 × I_P \Rightarrow transient error-field?
 - Know passive plates and vacuum vessel not perfectly aligned w.r.t. coils

In-vessel conductor asymmetries likely important for next-step devices...

Two external mode control coils used for n=1 mode locking & error field studies

1kA per turn × 2 turns / coil \Rightarrow 1-5 G resonant 2/1 B_⊥

There is uncertainty in ρ (q=2) surface w/o MSE for this data

ρ(q=2) is also expected to change rapidly during ramp

- 1kA I_{RWM} ⇒ 10G of n=1 radial field @ external B_R sensors
- n=3 amplitude similar @ ext.
 sensors, but w/ much faster
 radial fall-off into plasma

RWM coil current per turn (A)

Locked-mode shots also demonstrate error field amplification (EFA) dependence on β_{N} at low-n RWM coil current (kA) Plasma Current (MA) Blue shot has $I_{RWM} = 0$ -0.2 0.8 -0.4 0.6 113941 -0.6 0.4 113942 Others use I_{RWM} that doesn't cause locking at t=140ms -0.8 113943 0.2 113944 Normalized toroidal beta ſ Injected NBI Power (MW)

4

2

1.5x10¹³

1x10¹³

5x10¹²

0

0

Seconds

 $n_e \text{ scan yields } \beta \text{ scan}$ after 2nd source fires **NBI** waveforms fixed n=1 locked-mode amplitude (Gauss) Line-average density (1/cc) 2.0 Plasma amplifies field 1.5 when β_N > approx. 2 1.0 I_{RWM} = 0 shot has smallest LM signal → 0.5 smaller residual error 0.05 0.10 0.15 0.20 0.25 0.25 0.05 0.20 Λ 0.10 0.15

Seconds

field later in shot?

Internal sensors find only n=1 EFA

n=1 EFA factor ≈ 2-3 at maximum β_N
 n=2 and n=3 EFA weak or absent

NSTX static error-field measurements & modeling

- Measure vacuum fields from PF coils with B_R sensors
 - 12 above, 12 below midplane
- Relative position of sensors measured to mm precision

- PF coil shape and position estimated from sensor data
- Comparing to physical measurements of shape now

Filament model of sensors and PF coils

(RWM coils not used yet in this analysis)

- Allow X,Y shift of coil center + *n*=2-3 elliptical deformation
 - n > 3 also tried only PF5 is close enough to B_R sensors to possibly trust the results.
 - Only shift allowed for PF2
- Mean R of coils constrained to match measured values
- No Z-variation of coils allowed
 - Coils assumed to all be co-planar based on how supports on vessel were originally machined

Locked-mode and EF plans

- Use all 6 RWM coils in threshold scans
 - Scan n=1 amplitude and toroidal phase
 - Find optimal n=1 **B** for minimizing locking
 - Compare I_{P} ramp and flat-top corrective fields
 - Compare threshold scaling to existing high-A data
- Compute error fields from coil shifts
 - Compute corrective fields from RWM coils
- Compare error fields inferred from coil shifts to corrective fields that minimize locking
- Implementation of dynamic EF correction

Plasma control and modeling

rtEFIT IMPLEMENTATON

- NEW ALGORITHM FOR REAL TIME SHAPE CONTROL COMMISSIONED IN 2002
- 62 MAGNETIC FIELD AND FLUX MEASUREMENTS, 11 POLOIDAL FIELD COIL CURRENT MEASURMENTS, AND 9 LOOP VOLTAGE MEASUREMENTS
- FACTOR OF 4 REDUCTION IN CONTROL SYSTEM LATENCY ACHIEVED IMPROVED VERTICAL POSITION CONTROL

Elongation (к) control

- High I_i (~1.5)double-null RF heated plasma
- κ was increased by increasing the requested height of the X-points after 0.2 s from shot-to-shot
- The sudden drops in kappa do not represent a large shape change, but rather are due to algorithm in EFIT used to get kappa

Control of drsep

(the separation at the outboard midplane between the flux surfaces on which the X-points lie)

- Control of drsep is achieved by adjusting the control point for PF3L (for positive drsep) to be further inside the plasma than for drsep = 0 and by using a symmetry term to control the fluxes at the two control locations at the outer midplane
- The X-point references are unchanged, but the actual location of the lower X-point moves.

Boundary Control Results

- Reproducible boundary control demonstrated over a sequence of shots
- Reproducible boundary to ~ 1 ۲ cm
- Control maintained for ~ 0.3 sec plasma flattop

NSTX rtEFIT RESULTS SUMMARY

- rtEFIT successfully employed on XPs:
 - MAST similarity XP
 - Edge rotation during H-modes
 - EBW emission XP
 - HHFW + NBI XPs
 - HHFW heating and CD XPs
- rtEFIT used approximately 40% of XP shots this run period
- Significant experience gained in using rtEFIT features
- Improved kappa vs. li stability regime
- Improved boundary and outer gap control

NOTE: Development of single null shot scenarios planned for future XPs

Summary of Recent Results

- PCS development and support
- Modeling, simulation, and validation:
 - tools, experimental analysis
 - power supplies
 - diagnostic Green functions
 - vacuum (coils/vessel) circuit response
 - plasma VDE
- OH-less startup scenario support
 - data to Khayrutdinov/Choi
 - DINA development
 - scenario design

EXAMPLE POWER SUPPLY MODEL VALIDATION

• NSTX 12 pulse power supply model (R.Hatcher):

• Typical validation results (OH, PF2u,l, PF3u,l, PF5u,l):

SINGLE COIL EXCITATION TESTS VALIDATE MODEL

• Single coil voltage waveforms from experiment excite model and results are compared with experiment.

PCS Development and Support

- Upgraded software versions to most recent PCS and rtefit/isoflux algorithm
- Supported rtefit/isoflux use in experiment during initial learning curve
- rtefit/isoflux use became more routine
- Enabled scans of double null shape up/down symmetry
- Enabled exploration of more strongly shaped single and double null plasmas

NSTX U TOMICS

NSTX GEOMETRY AND VERTICAL DISPLACEMENT EVENT (VDE)

EXPERIMENT/MODEL COMPARISON OF CONTROL-DISABLED VDE PROVIDES VALIDATION OF PLASMA/PASSIVE STRUCTURE MODEL

- Vertical control is disabled at t= 0.4 s and unstable plasma evolves through a Vertical Displacement Event (VDE).
- Sequence of EFIT resonstructions (previous slide) provide time history of vertical position and allow fitting of overall growth rate, γ.
- Model calculations of Y, based on a linearized model calculated from each EFIT, compare favorably with growth rate fitted to experiment.

OH-less Startup Scenario Support

Initial Successful Solenoid-Less Operation in NSTX Used Outside Coil Pairs

- Analysis provides guidance for NSTX experment
- Allows validation of models under very severe accuracy requirements.

RF pre-ionization provides initial breakdown near outer extremes of chamber. At ~8ms vertical field switches sign and plasma is formed over a major part of the chamber. Vertical field continues to rise above that required for full bore plasma and compresses the plasma onto the centerpost.

DINA Simulation is Consistent With the Plasma Initiation Sequence

Future plans -Present Collaboration

- Support engineering analyses
 - experimental needs
 - ongoing modifications
- Complete detailed system validation (all coils, vacuum vessel, VDEs)
- Simulink NSTX plant model
- Design vertical controllers
- Get ready for advanced shape control design
- Continued support OH-less startup
 - **DINA development/simulations**
 - scenario calculations

🕅 NSTX 🛛 🖓 🖓 🖓 🖓 💠 GENERAL ATOMICS

First MSE on NSTX

Nova Photonics, Inc.

- Innovations improve the polarization fraction.
 - 1. Optimize optics to reduce geometric spectral broadening.
 - Spectral broadening is from the finite optics and image size. Optimization of the optics can reduce the spectral width.
 - 2. Development of high resolution, high throughput filter to extend measurements to \sim 0.3 T.
 - Wide field Lyot type birefringent filter meets requirements.

MSE-CIF Layout on **NSTX**

- Tangential sight-lines at edge and center provide optimal spatial resolution over a wide field of view. [Goldston & Goldston, Rev. Sci. Instrum. <u>66</u>, 5638(1995)].
- MSE and CHERS share collection optics, but have separate fiber arrays.

Nova Photonics, Inc.

- MSE magnetic axis from zero crossing of pitch angle.
- Magnetic axis evolution is consistent with EFIT and magnetics.

MSE Consistency: Sawteeth

Nova Photonics, Inc.

- $q(0) \sim 0.8$ before sawtooth crash and rises to $q(0) \sim 1$ after crash. The magnetic axis shifts inboard ~2 cm after sawtooth.
- MSE integration time is 5 ms. Sawtooth period is 15 ms.