

Aspect Ratio Considerations for Resistive Wall Mode Stabilization

S. A. Sabbagh¹, A.C. Sontag¹, R. E. Bell², J. Bialek¹, A. Garofalo¹, D.A. Gates², A. H. Glasser³, B.P. LeBlanc², F.M. Levinton⁴, J.E. Menard², H. Reimerdes¹, W. Zhu¹, M.G. Bell², T.M. Biewer², C.E. Bush⁵, J.D. Callen⁶, M.S. Chu⁷, C. Hegna⁶, S. M. Kaye², L. L. Lao⁷, R. Maingi⁵, D. Mueller², K.C. Shaing⁶, D. Stutman⁸, K. Tritz⁸, C. Zhang⁹

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

³Los Alamos National Laboratory, Los Alamos, NM, USA
⁴Nova Photonics, Princeton, NJ, USA
⁵Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁶University of Wisconsin, Madison, WI, USA
⁷General Atomics, San Diego, CA, USA
⁸Johns Hopkins University, Baltimore, MD, USA
⁹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

IEA Workshop 59: Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamak

February 14 – 15, 2005 General Atomics, San Diego, CA

Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL UC Davis UC** Irvine UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo JAERI loffe Inst TRINITI KBSI KAIST ENEA. Frascati CEA. Cadarache **IPP**, Jülich IPP. Garching U Quebec

Physics study of global MHD mode stabilization at low A provides understanding for all A, including ITER

Motivation

- **Study** / optimize high β stability of low A, spherical tokamak
- Low A, high q challenges theory and code benchmarking
- Compare data from various A devices to test theory

• Key Topics

- Kink and RWM stabilization at low A; mode characteristics
- Toroidal rotation damping physics
- Critical plasma rotation frequency for stabilization, Ω_{crit}
- Resonant field amplification (RFA)
- Rotation effects on equilibrium at low A

Low A kink mode amenable to stabilization at high β_N

□ Higher A ~ 3.1 (DIII-D); β_N = 2.2 (above $\beta_N^{\text{no-wall}}$)

- Maximum amplitude on outboard side; relatively long poloidal wavelength
- Strong wall coupling; effective wall stabilization

Lower A ~ 1.4 (NSTX)

- β_N = 2.4:
 - Minimum amplitude on outboard side; short poloidal wavelength inboard side
 - Weak wall coupling; ineffective wall stabilization
- $\beta_{\rm N} = 5.0$ (above $\beta_{\rm N}^{\rm no-wall}$)
 - Mode balloons out and can be effectively stabilized

<u>Wall stabilization physics understanding is key</u> to sustained plasma operation at maximum β

Unstable n = 1-3 RWM observed

- n > 1 theoretically more prominent at low A
 - Fitzpatrick-Aydemir (F-A) theory / experiment show
 - mode rotation can occur during growth
 - growth rate, rotation frequency ~ $1/\tau_{wall}$
 - << edge Ω_{ϕ} > 1 kHz
 - RWM phase velocity follows plasma flow
 - n=1 phase velocity not constant due to error field
- Low frequency tearing modes absent

Camera shows scale/asymmetry of theoretical RWM

Before RWM activity

(exterior view)

(interior view)

- Visible light emission is toroidally asymmetric during RWM
- DCON theory computation displays mode
 - uses experimental equilibrium reconstruction
 - □ includes n = 1 3 mode spectrum
 - uses relative amplitude / phase of n spectrum measured by RWM sensors

Plasma rotation damping described by NTV theory

Neoclassical toroidal viscosity (NTV)

Evolution detail differs for other modes
 no momentum transfer across rational surfaces
 no rigid rotor plasma core (internal 1/1 mode)

S.A.Sabbagh - IEA Workshop 59 - 02/15/05

NTV Torque depends on aspect ratio, n, q

Neoclassical toroidal viscosity (NTV) theory (K.C. Shaing et al., Phys. Fluids 29 (1986) 521)

Experimental Ω_{crit} follows Bondeson-Chu theory

Phys. Plasmas 8 (1996) 3013

- Experimental Ω_{crit}
 - □ stabilized profiles: $\beta > \beta_N^{no-wall}$ (DCON)
 - □ profiles not stabilized cannot maintain $\beta > \beta_N^{no-wall}$
 - □ regions separated by $\omega_{\phi}/\omega_{A} = 1/(4q^{2})$

Drift Kinetic Theory

- Trapped particle effects significantly weaken stabilizing ion Landau damping
- □ Toroidal inertia enhancement more yields $\Omega_{crit} = \omega_A/(4q^2)$

Neoclassical effect: Is there an $\varepsilon^{0.5}$ scaling?

Ω_{crit} follows F-A theory with neoclassical viscosity

(K. Shaing, PoP 2004)

DIII-D/NSTX RWM experiment to investigate q, A effects

S.A.Sabbagh – IEA Workshop 59 – 02/15/05

Resonant Field Amplification increases at high β_N

 Plasma response to applied field from initial RWM stabilization coil pair
 AC and pulsed n = 1 field

- RFA increase consistent with DIII-D
- Stable RWM damping rate of 300s⁻¹ measured in NSTX, similar to DIII-D

• Proposed improvement raises maximum stable β_N to near 5 (!)

Active feedback coil modification (coils in ports)

<u>Kink/RWM stabilization research at low aspect ratio</u> <u>illuminates key physics for general high β operation</u>

- Plasma with $\beta_t = 39\%$, $\beta_N = 6.8$, $\beta_N/I_i = 11$ reached; $\beta_N/\beta_N^{no-wall} > 1.3$
- Unstable n = 1-3 RWMs measured (n > 1 prominent at low A)
- Critical rotation frequency ~ ω_A/q² strongly influenced by toroidal inertia enhancement (prominent at low A)
- Rapid, global plasma rotation damping mechanism associated with neoclassical toroidal viscosity (stronger at low A, high q)
- Resonant field amplification of stable RWM increases with increasing β_{N} (similar to higher A)
- Plasma rotation at low A can significantly alter core pressure gradients
- Full RWM stabilization coil and MSE diagnostic will be used to study and suppress RFA, actively stabilize RWM, sustain high beta in 2005

□ Will allow thorough comparison with higher aspect ratio DIII-D plasmas

Supporting slides follow

Theory provides framework for wall stabilization study

Fitzpatrick-Aydemir (F-A) stability curves

Theory

- Ideal MHD stability DCON (Glasser)
 - arbitrary 2-D geometry
- RWM passive/active stability VALEN
 - 3-D geometry
- Drift kinetic theory (Bondeson Chu)
 - cylindrical; toroidal expansion
- RWM dynamics (Fitzpatrick Aydemir)

cylindrical

$$\left[\left(\hat{\gamma} - i\hat{\Omega}_{\phi} \right)^{2} + v_{*} \left(\hat{\gamma} - i\hat{\Omega}_{\phi} \right) + (1 - s)(1 - md) \right] \left[S_{*}\hat{\gamma} + (1 + md) \right] = \left(1 - (md)^{2} \right)$$
plasma inertia dissipation mode strength $\sqrt{}$ wall response wall/edge coupling

 $S_* \sim 1/\tau_{wall}$

Soft X-ray emission shows toroidal asymmetry during RWM

