

Progress Towards High Performance Plasmas in the National Spherical Torus Experiment (NSTX)

Stanley M. Kaye for the NSTX Research Team PPPL, Princeton University, U.S.A.

20th IAEA Fusion Energy Conference Vilamoura, Portugal November 2004

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI SNL UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin Culham Sci Ctr** Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo JAERI loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** U Quebec

NSTX Is Designed To Study Toroidal Confinement Physics at Low Aspect Ratio and High β_T

Establish physics database for future Spherical Torus (ST) devices

Aspect ratio A	1.27
Elongation ĸ	2.5
Triangularity δ	0.8
Major radius R_0	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B_{T0}	0.6T
Pulse Length	1s
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature 1 – 3 keV	

Non-solenoidal current generation/sustainment key element of program

Operational and Physics Advances Have Led to Significant Progress Towards Goal of High- β_T , Non-Inductive Operation

- $\tau_{\text{Ip flattop}} \sim 3.5 \tau_{\text{skin}}$
- $\tau_{W \text{ flattop}} \sim 10 \tau_{E}$
- β_T >20%, β_N >5, $\tau_E/\tau_{E,L}$ >1.5 for ~10 τ_E
- $I_{BS}/I_{p} = 0.5, I_{Beam}/I_{p} = 0.1$

SMK - IAEA '04

- $f_{BS} = I_{BS}/I_p = 0.5 \epsilon^{1/2} \beta_{pol}$
 - $\beta_T = /(B_{T0}^2/2\mu_0)$

Improved Plasma Control System Opened Operating Window During 2004 Campaign

Reduced latency improved vertical control at high- κ , high- β_T

More routine high κ , δ Longer current flattop duration $\tau_{pulse} = \tau(>0.85 \ I_{p,max})$ Capability for higher κ , δ allowed higher I_P/aB_T Significantly more high- β_T (β_N =6.8 %·m·T/MA achieved)

— 🔘 NST

β_T Can Be Limited by Internal Modes – Rotation Dynamics Important

• Flow shear/diamagnetic effects slow internal mode growth • Coupled 2/1, 1/1 modes eventually reduce rotation $\rightarrow \beta_T$ collapse

Resistive Wall Modes Can Limit β_T at Low q

Critical rotation frequency ~ 1/q²

10% above no-wall limit for many wall times ($\tau_{wall} \sim 5$ msec)

n=1-3 components measured by new internal magnetic sensors - first observation of n>1

> Newly installed active coils for error field/RWM control will provide means to stabilize external modes

> > Sabbagh EX/3-2

NSTX exhibits a broad spectrum of instabilities driven by fast ion resonance

SMK – IAEA '04

Systematic Scans Reveal Stored Energy Increases With Plasma Current in NBI Discharges

~ Linear dependence at fixed B_T , P_{ini}

Parametric Dependences of NSTX Energy Confinement Time Established

Long-Wavelength Turbulence Measured in Core for First Time in an ST Through Correlation Reflectometery

Core density fluctuations influenced strongly by magnetic fluctuations – radial correlation lengths long

NSTX Has Investigated Regimes of Reduced Electron Transport

- Electron transport generally dominant ($\chi_{neo} \leq \chi_i \leq \chi_e$ in H-mode)
- Produced electron ITBs using fast current ramp, early NBI in low density (n_{e0}~2.10¹⁹ m⁻³) L-modes

NSTX Has Developed MSE for Current Profile Measurements at Low B_T

- Preliminary reconstructions performed
- Agreement with TRANSP modeling good

Non-solenoidal current generation/sustainment essential in future ST

- 1) PF-only startup
 - 20 kA generated

Goal is to maintain plasma on outside where V_{loop} is high

2) Transient Co-Axial Helicity Injection
 - I_p up to 140 kA, I_p/I_{injector} up to 40

New Diagnostics/Experiments Leading to Better Understanding of HHFW Absorption

Absorption deficit observed during HHFW heating

- Dependent on wave phase

% Absorption

k _{II} =14 m⁻¹	80%
["] 7 m ⁻¹ (ctr)	70%
-7 m ⁻¹ (co)	40%
-3 m⁻¹	~10%

Edge ion heating associated with parametric decay of HHFW into IBW

Impact of edge heating on HHFW absorption being studied

Edge ion heating observed during HHFW

70 to 90% of Power Accounted for in NBI Discharges

- Most power to divertor plates (35%)
- Inner divertor detachment for n_e ≥ 2.10¹⁹ m⁻³
 - Reduced heat flux: 1 MW/m²
- Outer divertor always
 attached
 - q_{heat} up to 10 MW/m²
 - Attempt to detach with higher n_{edge} &/or P_{rad,div}

A New Type of ELM With Minimal Energy Loss/Power Loading Has Been Observed

Significant Progress Made in Addressing ST Physics Goals and in Increasing Our Understanding of Toroidal Confinement Physics

- Improved plasma control and routine high elongation
- High β_T and enhanced confinement for long duration (several τ_E)
 - β_T up to ~40%, β_N up to 6.8 %·m ·T/MA
 - Developing understanding of β -limits and methods to control MHD modes
 - Developing integrated understanding of plasma transport and methods to reduce transport
- Non-solenoidal plasma startup
- Regimes of reduced power loading
- Current flattops for several current relaxation times
 - Significant sustained non-inductive current at high- β_T (60% of total)
- Integration of achievements form basis for moving forward with ST concept
 - Many NSTX accomplishments consistent with requirements for ST Component Test Facility (Wilson FT/3-1a,b)

Backup

Longer Duration High- β_T Achieved With Edge Density Control

Large flow shear and strong gradients observed at time of peak $\beta_T \rightarrow$

- He pre-conditioning to control recycling
- •Early NBI and pause in I_p ramp trigger early H-mode
- β_T max at $I_P/I_{TF} \sim 1$

