<u>Computational analysis of advanced control</u> <u>methods applied to RWM control in tokamaks</u>

Oksana N. Katsuro-Hopkins Columbia University, New York, NY, USA

with S.A. Sabbagh, J.M. Bialek

US-Japan Workshop on MHD Control,

Magnetic Islands and Rotation

November 23-25, 2008

University of Texas, Austin, Texas, USA

Workshop on MHD Control 2008 – O.Katsuro-Hopkins

Workshop on MHD Control 2008 - O.Katsuro-Hopkins

LQG controller is capable to enhance resistive wall mode control system

Motivation

- To improve RWM feedback control in NSTX with present external RWM coils
- Outline
 - Advantages of the LQG controller
 - VALEN state space modeling with mode rotation and control theory basics used in the design of LQG
 - Application of the advanced controller techniques to NSTX

<u>Limiting β_n RWM in ITER can be improved with</u> LQG controller* and external field correction coils

- Simplified ITER model includes
 - double walled vacuum vessel
 - □ 3 external control coil pairs
 - 6 magnetic field flux sensors on the midplane (z=0)

*Nucl. Fusion 47 (2007) 1157-1165

<u>Limiting β_n RWM in ITER can be improved with</u> <u>LQG controller* and external field correction coils</u>

Growth rate γ , 1/sec

- Simplified ITER model includes
 - double walled vacuum vessel
 - 3 external control coil pairs
 - 6 magnetic field flux sensors on the midplane (z=0)
- 10 Gauss sensor noise RWM
- LQG is robust for all C_{β} < 86% with respect to β_{N}

*Nucl. Fusion 47 (2007) 1157-1165

<u>Limiting β_n RWM in ITER can be improved with</u> <u>LQG controller* and external field correction coils</u>

- Simplified ITER model includes
 - double walled vacuum vessel
 - 3 external control coil pairs
 - 6 magnetic field flux sensors on the midplane (z=0)
- 10 Gauss sensor noise RWM
- LQG is robust for all C_{β} < 86% with respect to β_{N}

*Nucl. Fusion 47 (2007) 1157-1165

<u>DIII-D LQG is robust with respect to β_N and stabilizes RWM up to ideal wall limit</u>

DIII-D with internal control coils

Workshop on MHD Control 2008 – O.Katsuro-Hopkins

<u>DIII-D LQG is robust with respect to β_N and stabilizes RWM up to ideal wall limit</u>

• LQG is robust with respect to β_N and stabilize RWM up to ideal wall limit for 0.01 < torque < 0.08

DIII-D with internal control coils

<u>DIII-D LQG is robust with respect to β_N and stabilizes RWM up to ideal wall limit</u>

- LQG is robust with respect to β_N and stabilize RWM up to ideal wall limit for 0.01 < torque < 0.08
- LQG provides better reduction of current and voltages compared with proportional gain controller

DIII-D with internal control coils

Initial results using advanced Linear Quadratic Gaussian (LQG) controller in KSTAR yield factor of 2 power reduction for white noise*

n=1 RWM passive stabilization currents

- Conducting hardware, IVCC set up in VALEN-3D* based on engineering drawings
- Conducting structures modeled
 - Vacuum vessel with actual port structures
 - Center stack back-plates
 - Inner and outer divertor back-plates
 - Passive stabilizer (PS)
 - PS Current bridge

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins

Initial results using advanced Linear Quadratic Gaussian (LQG) controller in KSTAR yield factor of 2 power reduction for white noise*

n=1 RWM passive stabilization currents 10⁶ with wall no wall 105 RVM growth rate, 1/s 104 Passive 10³ Active growth gain (V/G) 10² 0.1 1.0 10 10¹ 100 VALEN-3D **10**⁻¹ 3 5 6 7 8 4 β_{N}

- Conducting hardware, IVCC set up in VALEN-3D^{*} based on engineering drawings
- Conducting structures modeled
 - Vacuum vessel with actual port structures
 - Center stack back-plates
 - Inner and outer divertor back-plates
 - Passive stabilizer (PS)
 - PS Current bridge
- IVCC allows active n=1 RWM stabilization near ideal wall β_n limit, for proportional gain and LQG controllers

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins

Initial results using advanced Linear Quadratic Gaussian (LQG) controller in KSTAR yield factor of 2 power reduction for white noise*

n=1 RWM passive stabilization currents

White noise (1.6-2.0G RMS)

	(F				
C _β	I _{IVCC} (A)	$V_{IVCC}(V)$	$P_{IVCC}(W)$		
80%	3%	50%	47%		Unloaded IVCC
95%	15%	51%	58%		L/R=12.8ms
				-	
80%	38%	75%	47%		FAST IVCC circuit
95%	15%	73%	58%		L/R=1.0ms

- Conducting hardware, IVCC set up in VALEN-3D* based on engineering drawings
- Conducting structures modeled
 - Vacuum vessel with actual port structures
 - Center stack back-plates
 - Inner and outer divertor back-plates
 - Passive stabilizer (PS)
 - PS Current bridge
- IVCC allows active n=1 RWM stabilization near ideal wall β_n limit, for proportional gain and LQG controllers

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins

<u>Tutorial</u> on selected control theory topics

Digital LQG controller proposed to improve stabilization performance

Detailed diagram of digital LQG controller

LQG Controller

- State estimate stored in observer provides information about amplitude and phase of RWM and takes into account wall currents
- Dimensions of LQG matrices depends on
 - State estimate (reduced balanced VALEN states)~10-20
 - Number of control coils ~3
 - Number of sensors ~ 12-24
- All matrixes in LQG calculated <u>in advance</u> using VALEN state-space for particular 3-D tokamak geometry, fixed plasma mode amplitude and rotation speed

Balanced truncation significantly reduces VALEN state

<u>space</u>

State-space control approach may allow superior feedback performance

 VALEN circuit equations after including unstable plasma mode. Fluxes at the wall, feedback coils and plasma are

$$\vec{\Phi}_{w} = \vec{L}_{ww} \cdot \vec{I}_{w} + \vec{L}_{wf} \cdot \vec{I}_{f} + \vec{L}_{wp} \cdot I_{d}$$
$$\vec{\Phi}_{f} = \vec{L}_{fw} \cdot \vec{I}_{w} + \vec{L}_{ff} \cdot \vec{I}_{f} + \vec{L}_{fp} \cdot I_{d}$$
$$\Phi_{p} = \vec{L}_{pw} \cdot \vec{I}_{w} + \vec{L}_{pf} \cdot \vec{I}_{f} + \vec{L}_{pp} \cdot I_{d}$$

Equations for system evolution

$$\begin{pmatrix} \vec{\mathcal{L}}_{ww} & \vec{\mathcal{L}}_{wf} & \vec{\mathcal{L}}_{wp} \\ \vec{\mathcal{L}}_{fw} & \vec{\mathcal{L}}_{ff} & \vec{\mathcal{L}}_{fp} \\ \vec{\mathcal{L}}_{pw} & \vec{\mathcal{L}}_{pf} & \vec{\mathcal{L}}_{pp} \end{pmatrix} \cdot \frac{d}{dt} \begin{pmatrix} \vec{I}_{w} \\ \vec{I}_{f} \\ I_{d} \end{pmatrix} = \begin{pmatrix} \vec{R}_{w} & 0 & 0 \\ 0 & \vec{R}_{f} & 0 \\ 0 & 0 & \vec{R}_{d} \end{pmatrix} \cdot \begin{pmatrix} \vec{I}_{w} \\ \vec{I}_{f} \\ I_{d} \end{pmatrix} + \begin{pmatrix} \vec{0} \\ \vec{V}_{f} \\ 0 \\ 0 \\ 0 \\ \vec{X} = \vec{A}\vec{X} + \vec{B}\vec{u}$$

In the <u>state-space form</u>

 $\vec{x} = \begin{pmatrix} \vec{I}_w & \vec{I}_f & I_d \end{pmatrix}^T; \quad \vec{A} = -\vec{L}^{-1} \cdot \vec{R}; \quad \vec{B} = \vec{L}^{-1} \cdot \vec{I}_{cc}; \quad \vec{u} = \vec{V}_f$ where

& measurements $\vec{y} = \Phi_s$ are sensor fluxes. State-space dimension ~1000 elements!

Classical control law with proportional gain defined as $\vec{u} = -\vec{G}_n \vec{y}$

VALEN formulation with rotation allows inclusion of mode phase into state space*

- VALEN uses two copies of a single unstable mode with $\pi/2$ toroidal displacement of these two modes
- The VALEN uses two dimensionless parameter normalized torque " α " and normalized energy "s"

 $s = -\frac{\delta W}{L_B I_b^2/2} = -\frac{\text{energy required with plasma}}{\text{energy required WITHOUT plasma}}$

 $\alpha = \frac{torque}{L_B I_b^2 / 2} = \frac{torque \text{ on mode by plasma}}{energy \text{ required WITHOUT plasma}}$

- The VALEN parameters 's' and ' α ' together determine growth rate γ and rotation Ω of the plasma mode
- LQG is optimized off line for best stability region with respect to 's' and ' α ' parameters.

*Boozer PoP Vol6, No. 8, 3190 (1999)

<u>Measure of system controllability and observability is</u> <u>given by controllability and observability grammians</u>

- Given <u>stable</u> Linear Time-Invariant (LTI) Systems
- Observability grammian, $\Gamma_o = \int_0^\infty e^{A^T \tau} C^T C e^{A \tau} d\tau$, can be found be solving continuous-time Lyapunov equation, $A^T \Gamma_o + \Gamma_o A + C^T C = 0$, provides measure of output energy: $\|y\|_2^2 = x_0^T \Gamma_O x_0$
- $\Gamma_o = U \Lambda_o U^T$ defines an "observability ellipsoid" in the state space with the longest principal axes along the <u>most observable directions</u>
- Controllability grammian, $\Gamma_c = \int_0^\infty e^{A\tau} B B^T e^{A^T \tau} d\tau$, can be found be solving continuous-time Lyapunov equation, $A\Gamma_c + \Gamma_c A^T + BB^T = 0$, provides measure of input(control) energy: $\|u\|_2^2 = x_0^T \Gamma_c^{-1} x_0$
- $\Gamma_c = V \Lambda_c V^T$ defines a "controllability ellipsoid" in the state space with the longest principal axes along the most controllable directions

Balanced realization exists for every stable controllable and observable system

Determination of optimal controller gain for the dynamic ^(III) system

For given dynamic process: $\dot{\vec{x}} = \vec{A}\vec{x} + \vec{B}\vec{u}$ Find the matrix \vec{K}_c such that control law: $\vec{u} = -\vec{K}_c \vec{x}$ minimizes Performance Index: $J = \int_{0}^{1} (\hat{\vec{x}}'(\tau) \ddot{\vec{Q}}_{r}(\tau) \hat{\vec{x}}(\tau) + \vec{u}'(\tau) \ddot{\vec{R}}_{r}(\tau) \vec{u}(\tau)) d\tau \rightarrow \min$ where tuning parameters are presented by \ddot{Q}_r , \ddot{R}_r - state and control weighting matrixes, Solution: Controller gain for the steady-state can be calculated as $\vec{K}_{c} = \vec{R}^{-1}\vec{B}_{r}^{T}\vec{S}$ Ŝ Where is solution of the controller Riccati matrix equation $\ddot{S}\vec{A}_r + \ddot{A}_r^T \ddot{S} - \ddot{S}\vec{B}_r \ddot{R}_r^{-1} \ddot{B}_r^T \ddot{S} + \ddot{Q}_r = 0$

Determination of optimal observer gain for the dynamic ^(III) system

<u>Closed system equations with optimal controller and</u> optimal observer based on reduced order model

Advanced controller methods planned to be tested on **NSTX** with future application to KSTAR

- VALEN NSTX Model includes
 - Stabilizer plates
 - External mid-plane control coils closely coupled to vacuum vessel
 - Upper and lower Bp sensors in actual locations
 - Compensation of control field from sensors
 - Experimental Equilibrium reconstruction (including MSE data)
- Present control system on NSTX uses Proportional Gain

Advanced control techniques suggest significant feedback performance improvement for NSTX up to $\beta_n/\beta_n^{\text{wall}} = 95\%$

Workshop on MHD Control 2008 – O.Katsuro-Hopkins

LQG with mode phase needs only 9 modes using B_p upper and lower sensors sums and differences

- stable balanced states)
- LQG(β_N=6.7,N=7)

stable balanced states)
LQG(α=0,β_N=6.7,N=9)

<u>LQG(0,6.7,9) stabilizes slow rotating RWM</u> mode up to $\beta_N < 6.7$

<u>LQG(0,6.7,9) stabilizes slow rotating RWM</u> <u>mode up to $\beta_N < 6.7$ </u>

<u>LQG(0,6.7,9) stabilizes slow rotating RWM</u> <u>mode up to $\beta_N < 6.7$ </u>

LQG(0,6.7,9) stabilizes slow rotating RWM mode up to $\beta_N < 6.7$

>90% power reduction for white noise driven time evolution of the controlled RWM

- White noise 7 gauss in amplitude with 5kHz sampling frequency
- Power is proportional to white noise amplitude² and sampling frequency⁻¹
- No filters on B_p sensors in proportional controller was used in this study

Peak Values

C _β	I _{CC} , A	V _{CC} , V	P, Watts	I _{CC} , A	V _{CC} , V	P, Watts
10%	70%	84%	94%	66%	84%	93%
20%	73%	85%	95%	68%	84%	94%
30%	77%	86%	96%	73%	85%	95%
40%	85%	90%	98%	82%	89%	98%

<u>RMS values</u>

Advanced controller study continuing...

Conclusions

NSTX advanced controller with mode phase has been tested numerically, 9 modes needed, large stability region for slow rotating mode. (RWM is usually locked in the NSTX experiments.)

Next Steps

- Study LQG with different torque, to improve robustness with respect to β_N and mode rotation speed.
- Off line comparison for mode phase and amplitude calculated with reduced order optimal observer and the present measured RWM sensor signal data SVD evaluation of n = 1 amplitude and phase from the experimental data
- Redesign state-space for control coil current controller input
- Analyze time delay effect on LQG performance

Thank you!

Workshop on MHD Control 2008 – O.Katsuro-Hopkins