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LQG controller is capable to enhance 
resistive wall mode control system 

•  Motivation 
  To improve RWM feedback control in NSTX with present 

external RWM coils 

•  Outline 
  Advantages of the LQG controller 
  VALEN state space modeling with mode rotation and 

control theory basics used in the design of LQG 
  Application of the advanced controller techniques to NSTX 
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Limiting βn RWM in ITER can be improved with 
LQG controller* and external field correction coils 

•  Simplified ITER model includes  
  double walled vacuum vessel 
  3 external control coil pairs  
   6 magnetic field flux sensors on the 

midplane (z=0) 

*Nucl. Fusion 47 (2007) 1157-1165 
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•  Simplified ITER model includes  
  double walled vacuum vessel 
  3 external control coil pairs  
   6 magnetic field flux sensors on the 

midplane (z=0)  
•  10 Gauss sensor noise RWM 
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*Nucl. Fusion 47 (2007) 1157-1165 

2 2.5 3 3.5 4 4.5 5
10

!1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

βN 

G
ro

w
th

 ra
te

 γ
, 1

/s
ec

 

Passive 

Ideal Wall 

PD Cβ = 68% 

LQG Cβ = 86% 



Workshop on MHD Control 2008 – O.Katsuro-Hopkins

Limiting βn RWM in ITER can be improved with 
LQG controller* and external field correction coils 
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RWM up to ideal wall limit for 0.01 < torque < 0.08 
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DIII-D LQG is robust with respect to βN and 
stabilizes RWM up to ideal wall limit 

•  LQG is robust with respect to βN and stabilize 
RWM up to ideal wall limit for 0.01 < torque < 0.08 

•  LQG provides better reduction of current and 
voltages compared with proportional gain controller  
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Initial results using advanced Linear Quadratic Gaussian (LQG) 
controller in KSTAR yield factor of 2 power reduction for white noise* 

•  Conducting hardware, IVCC set up in VALEN-3D* based 
on engineering drawings 

•  Conducting structures modeled 
  Vacuum vessel with actual port structures 
  Center stack back-plates 
  Inner and outer divertor back-plates 
  Passive stabilizer (PS) 
  PS Current bridge 

n=1 RWM passive 
stabilization currents 

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins 
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Initial results using advanced Linear Quadratic Gaussian (LQG) 
controller in KSTAR yield factor of 2 power reduction for white noise* 

•  Conducting hardware, IVCC set up in VALEN-3D* based 
on engineering drawings 

•  Conducting structures modeled 
  Vacuum vessel with actual port structures 
  Center stack back-plates 
  Inner and outer divertor back-plates 
  Passive stabilizer (PS) 
  PS Current bridge 

•  IVCC allows active n=1 RWM stabilization near ideal wall 
βn limit, for proportional gain and LQG controllers 

n=1 RWM passive 
stabilization currents 

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins 
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Tutorial  
on selected control theory topics 
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state estimate

Digital LQG controller proposed to improve stabilization 
performance 
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Detailed diagram of digital LQG controller 

•  State estimate stored in observer provides information about amplitude 
and phase of RWM and takes into account wall currents 

•  Dimensions of LQG matrices depends on 
  State estimate (reduced balanced VALEN states)~10-20 
  Number of control coils ~3 
  Number of sensors ~ 12-24 

•  All matrixes in LQG calculated in advance using VALEN state-space for 
particular 3-D tokamak geometry, fixed plasma mode amplitude and 
rotation speed 
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Balanced truncation significantly reduces VALEN state 
space 

Balancing 
transformation
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How to determine number of states to keep ?
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State-space control approach may allow 
superior feedback performance 

•  VALEN circuit equations after including unstable plasma mode. Fluxes at the wall, 
feedback coils and plasma are 

•  Equations for system evolution 

•  In the state-space form 

where 

& measurements             are sensor fluxes. State-space dimension ~1000 elements!  

•  Classical control law with proportional gain defined as 
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VALEN formulation with rotation allows inclusion of 
mode phase into state space* 

•  VALEN uses two copies of a single unstable mode with 
π/2 toroidal displacement of these two modes 

•  The VALEN uses two dimensionless parameter 
normalized torque “α” and normalized energy “s” 

•  The VALEN parameters ‘s’ and ‘α’ together determine 
growth rate γ and rotation Ω of the plasma mode 

•  LQG is optimized off line for best stability region with 
respect to ‘s’ and ‘α’ parameters. 

*Boozer PoP Vol6, No. 8, 3190 (1999) 
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Measure of system controllability and observability is 
given by controllability and observability grammians 

•  Given stable Linear Time-Invariant (LTI) Systems 

•  Observability grammian,    , can be found be solving 
continuous-time Lyapunov equation,                   , provides 
measure of output energy: 

•       defines an “observability ellipsoid”  
in the state space with the longest principal 
axes along the most observable directions 

•  Controllability grammian,    , can be found be solving 
continuous-time Lyapunov equation,                          , provides measure of 
input(control) energy: 

•     defines a “controllability ellipsoid” in the  
state space with the longest principal 
axes along the most controllable directions 
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•  Controllable, observable & stable system  
called balanced if 

            where  

  - Hankel Singular Values 
•  Balancing similarity transformation  

transforms observability and controllability 
ellipsoids to an identical ellipsoid aligned with 
the principle axes along the coordinate axes. 

•  The balanced transformation    can be defined  
in two steps: 
  Start with SVD of controllability grammian 

and define the first transformation as 
  Perform SVD of observability grammian in the new basis: 

the second transformation defined as 
  The final transformation matrix is given by: 

Balanced realization exists for every stable 
controllable and observable system 
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Determination of optimal controller gain for the dynamic 
system 

For given dynamic process: 

Find the matrix  such that control law: 

minimizes Performance Index: 

where tuning parameters are presented by            -  state and control  
weighting matrixes,  

Controller gain for the steady-state can be calculated as 

Where  is solution of the controller  Riccati matrix equation  
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Determination of optimal observer gain for the dynamic 
system 

For given stochastic dynamic process: 

with measurements: 

Find the matrix        such that observer equation 

minimizes error covariance: 

where tuning parameters are presented by           -  plant and measurement noise 
covariance matrix 

Observer gain for the steady-state can be calculated as 

Where  is solution of the observer Riccati matrix  equation  
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Closed system equations with optimal controller and 
optimal observer based on reduced order model 

Measurement 
noise

Full order VALEN 
model 

Optimal observer

Optimal controller

⇐ Closed loop continuous system 
allows to 
  Test if Optimal controller and observer 

stabilizes original full order model and 
defined number of states in the LQG 
controller 

  Verify robustness with respect to βn 
  Estimate RMS of steady-state 

currents, voltages and power 
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Advanced controller methods planned to be tested on 
NSTX with future application to KSTAR 

•  VALEN NSTX Model includes 

  Stabilizer plates 

  External mid-plane control coils 
closely coupled to vacuum 
vessel 

  Upper and lower Bp sensors in 
actual locations 

  Compensation of control field 
from sensors 

  Experimental Equilibrium 
reconstruction (including MSE 
data) 

•  Present control system on 
NSTX uses Proportional Gain  

RWM active stabilization coils 

RWM sensors (Bp) 

Stabilizer 
plates 
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Advanced control techniques suggest significant feedback 
performance improvement  for NSTX up to             = 95% 

•  Classical proportional 
feedback methods 
  VALEN modeling of 

feedback systems agrees 
with experimental results 

  RWM was stabilized up to 
βn = 5.6 in experiment. 

•  Advanced feedback 
control may improve 
feedback performance 
  Optimized state-space 

controller can stabilize up to 
Cβ=87% for upper Bp 
sensors and up to Cβ=95% 
for mid-plane sensors 

  Uses only 7 modes for LQG 
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LQG with mode phase needs only 9 modes using 
Bp upper and lower sensors sums and differences 

•  Fixed mode (fixed phase) 
•  7 states (1 unstable mode + 6 

stable balanced states) 
•  LQG(βN=6.7,N=7) 

•  Rotating mode (phase included) 
•  9 states (2 unstable modes + 7 

stable balanced states) 
•  LQG(α=0,βN=6.7,N=9) 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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>90% power reduction for white noise driven time 
evolution of the controlled RWM 

RMS values Peak Values 
Cβ ICC, A VCC, V P, Watts ICC, A VCC, V P, Watts 

10% 70% 84% 94% 66% 84% 93% 

20% 73% 85% 95% 68% 84% 94% 

30% 77% 86% 96% 73% 85% 95% 

40% 85% 90% 98% 82% 89% 98% 
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•  White noise 7 gauss in amplitude 
with 5kHz sampling frequency 

•  Power is proportional to white 
noise amplitude2 and sampling 
frequency-1 

•  No filters on Bp sensors in 
proportional controller was used in 
this study 

Proportional 
gain only 
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Advanced controller study continuing… 

•  Conclusions 
  NSTX advanced controller with mode phase has been tested 

numerically, 9 modes needed, large stability region for slow rotating 
mode. (RWM is usually locked in the NSTX experiments.) 

•  Next Steps 
  Study LQG with different torque, to improve robustness with respect 

to βN and mode rotation speed. 
  Off line comparison for mode phase and amplitude calculated with 

reduced order optimal observer and the present measured RWM 
sensor signal data SVD evaluation of n = 1 amplitude and phase 
from the experimental data 

  Redesign state-space for control coil current controller input 
  Analyze time delay effect on LQG performance 
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Thank you! 


