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LQG controller is capable to enhance 
resistive wall mode control system 

•  Motivation 
  To improve RWM feedback control in NSTX with present 

external RWM coils 

•  Outline 
  Advantages of the LQG controller 
  VALEN state space modeling with mode rotation and 

control theory basics used in the design of LQG 
  Application of the advanced controller techniques to NSTX 
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Limiting βn RWM in ITER can be improved with 
LQG controller* and external field correction coils 

•  Simplified ITER model includes  
  double walled vacuum vessel 
  3 external control coil pairs  
   6 magnetic field flux sensors on the 

midplane (z=0) 

*Nucl. Fusion 47 (2007) 1157-1165 
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•  Simplified ITER model includes  
  double walled vacuum vessel 
  3 external control coil pairs  
   6 magnetic field flux sensors on the 
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Limiting βn RWM in ITER can be improved with 
LQG controller* and external field correction coils 
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stabilizes RWM up to ideal wall limit 
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DIII-D LQG is robust with respect to βN and 
stabilizes RWM up to ideal wall limit 

•  LQG is robust with respect to βN and stabilize 
RWM up to ideal wall limit for 0.01 < torque < 0.08 

•  LQG provides better reduction of current and 
voltages compared with proportional gain controller  
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Initial results using advanced Linear Quadratic Gaussian (LQG) 
controller in KSTAR yield factor of 2 power reduction for white noise* 

•  Conducting hardware, IVCC set up in VALEN-3D* based 
on engineering drawings 

•  Conducting structures modeled 
  Vacuum vessel with actual port structures 
  Center stack back-plates 
  Inner and outer divertor back-plates 
  Passive stabilizer (PS) 
  PS Current bridge 

n=1 RWM passive 
stabilization currents 

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins 



Workshop on MHD Control 2008 – O.Katsuro-Hopkins


Initial results using advanced Linear Quadratic Gaussian (LQG) 
controller in KSTAR yield factor of 2 power reduction for white noise* 

•  Conducting hardware, IVCC set up in VALEN-3D* based 
on engineering drawings 

•  Conducting structures modeled 
  Vacuum vessel with actual port structures 
  Center stack back-plates 
  Inner and outer divertor back-plates 
  Passive stabilizer (PS) 
  PS Current bridge 

•  IVCC allows active n=1 RWM stabilization near ideal wall 
βn limit, for proportional gain and LQG controllers 

n=1 RWM passive 
stabilization currents 

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins 

R
W

M
 g

ro
w

th
 ra

te
, 1

/s
 

106 

105 

104 

103 

102 

101 

100 

10-1 
2  3      4      5      6      7      8 

βN 

no wall       with wall 



Workshop on MHD Control 2008 – O.Katsuro-Hopkins


Initial results using advanced Linear Quadratic Gaussian (LQG) 
controller in KSTAR yield factor of 2 power reduction for white noise* 

•  Conducting hardware, IVCC set up in VALEN-3D* based 
on engineering drawings 

•  Conducting structures modeled 
  Vacuum vessel with actual port structures 
  Center stack back-plates 
  Inner and outer divertor back-plates 
  Passive stabilizer (PS) 
  PS Current bridge 

•  IVCC allows active n=1 RWM stabilization near ideal wall 
βn limit, for proportional gain and LQG controllers 

n=1 RWM passive 
stabilization currents 

* IAEA FEC 2008 TH/P9-1 O. Katsuro-Hopkins 

FAST IVCC circuit  
L/R=1.0ms 

Unloaded IVCC 
L/R=12.8ms 

White noise (1.6-2.0G RMS) 

R
W

M
 g

ro
w

th
 ra

te
, 1

/s
 

106 

105 

104 

103 

102 

101 

100 

10-1 
2  3      4      5      6      7      8 

βN 

no wall       with wall 



Workshop on MHD Control 2008 – O.Katsuro-Hopkins


Tutorial  
on selected control theory topics 
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state estimate


Digital LQG controller proposed to improve stabilization 
performance 
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Detailed diagram of digital LQG controller 

•  State estimate stored in observer provides information about amplitude 
and phase of RWM and takes into account wall currents 

•  Dimensions of LQG matrices depends on 
  State estimate (reduced balanced VALEN states)~10-20 
  Number of control coils ~3 
  Number of sensors ~ 12-24 

•  All matrixes in LQG calculated in advance using VALEN state-space for 
particular 3-D tokamak geometry, fixed plasma mode amplitude and 
rotation speed 
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Balanced truncation significantly reduces VALEN state 
space 

Balancing 
transformation
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State-space control approach may allow 
superior feedback performance 

•  VALEN circuit equations after including unstable plasma mode. Fluxes at the wall, 
feedback coils and plasma are 

•  Equations for system evolution 

•  In the state-space form 

where 

& measurements             are sensor fluxes. State-space dimension ~1000 elements!  

•  Classical control law with proportional gain defined as 
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VALEN formulation with rotation allows inclusion of 
mode phase into state space* 

•  VALEN uses two copies of a single unstable mode with 
π/2 toroidal displacement of these two modes 

•  The VALEN uses two dimensionless parameter 
normalized torque “α” and normalized energy “s” 

•  The VALEN parameters ‘s’ and ‘α’ together determine 
growth rate γ and rotation Ω of the plasma mode 

•  LQG is optimized off line for best stability region with 
respect to ‘s’ and ‘α’ parameters. 

*Boozer PoP Vol6, No. 8, 3190 (1999) 
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Measure of system controllability and observability is 
given by controllability and observability grammians 

•  Given stable Linear Time-Invariant (LTI) Systems 

•  Observability grammian,    , can be found be solving 
continuous-time Lyapunov equation,                   , provides 
measure of output energy: 

•       defines an “observability ellipsoid”  
in the state space with the longest principal 
axes along the most observable directions 

•  Controllability grammian,    , can be found be solving 
continuous-time Lyapunov equation,                          , provides measure of 
input(control) energy: 

•     defines a “controllability ellipsoid” in the  
state space with the longest principal 
axes along the most controllable directions 
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•  Controllable, observable & stable system  
called balanced if 

            where  

  - Hankel Singular Values 
•  Balancing similarity transformation  

transforms observability and controllability 
ellipsoids to an identical ellipsoid aligned with 
the principle axes along the coordinate axes. 

•  The balanced transformation    can be defined  
in two steps: 
  Start with SVD of controllability grammian 

and define the first transformation as 
  Perform SVD of observability grammian in the new basis: 

the second transformation defined as 
  The final transformation matrix is given by: 

Balanced realization exists for every stable 
controllable and observable system 
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Determination of optimal controller gain for the dynamic 
system 

For given dynamic process: 

Find the matrix  such that control law: 

minimizes Performance Index: 

where tuning parameters are presented by            -  state and control  
weighting matrixes,  

Controller gain for the steady-state can be calculated as 

Where  is solution of the controller  Riccati matrix equation  
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Determination of optimal observer gain for the dynamic 
system 

For given stochastic dynamic process: 

with measurements: 

Find the matrix        such that observer equation 

minimizes error covariance: 

where tuning parameters are presented by           -  plant and measurement noise 
covariance matrix 

Observer gain for the steady-state can be calculated as 

Where  is solution of the observer Riccati matrix  equation  
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Closed system equations with optimal controller and 
optimal observer based on reduced order model 

Measurement 
noise


Full order VALEN 
model 

Optimal observer


Optimal controller


⇐ Closed loop continuous system 
allows to 
  Test if Optimal controller and observer 

stabilizes original full order model and 
defined number of states in the LQG 
controller 

  Verify robustness with respect to βn 
  Estimate RMS of steady-state 

currents, voltages and power 
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Advanced controller methods planned to be tested on 
NSTX with future application to KSTAR 

•  VALEN NSTX Model includes 

  Stabilizer plates 

  External mid-plane control coils 
closely coupled to vacuum 
vessel 

  Upper and lower Bp sensors in 
actual locations 

  Compensation of control field 
from sensors 

  Experimental Equilibrium 
reconstruction (including MSE 
data) 

•  Present control system on 
NSTX uses Proportional Gain  

RWM active stabilization coils 

RWM sensors (Bp) 

Stabilizer 
plates 
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Advanced control techniques suggest significant feedback 
performance improvement  for NSTX up to             = 95% 

•  Classical proportional 
feedback methods 
  VALEN modeling of 

feedback systems agrees 
with experimental results 

  RWM was stabilized up to 
βn = 5.6 in experiment. 

•  Advanced feedback 
control may improve 
feedback performance 
  Optimized state-space 

controller can stabilize up to 
Cβ=87% for upper Bp 
sensors and up to Cβ=95% 
for mid-plane sensors 

  Uses only 7 modes for LQG 
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LQG with mode phase needs only 9 modes using 
Bp upper and lower sensors sums and differences 

•  Fixed mode (fixed phase) 
•  7 states (1 unstable mode + 6 

stable balanced states) 
•  LQG(βN=6.7,N=7) 

•  Rotating mode (phase included) 
•  9 states (2 unstable modes + 7 

stable balanced states) 
•  LQG(α=0,βN=6.7,N=9) 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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LQG(0,6.7,9) stabilizes slow rotating RWM 
mode up to βN<6.7 
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>90% power reduction for white noise driven time 
evolution of the controlled RWM 

RMS values Peak Values 
Cβ
 ICC, A VCC, V P, Watts ICC, A VCC, V P, Watts 

10% 70% 84% 94% 66% 84% 93% 

20% 73% 85% 95% 68% 84% 94% 

30% 77% 86% 96% 73% 85% 95% 

40% 85% 90% 98% 82% 89% 98% 
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•  White noise 7 gauss in amplitude 
with 5kHz sampling frequency 

•  Power is proportional to white 
noise amplitude2 and sampling 
frequency-1 

•  No filters on Bp sensors in 
proportional controller was used in 
this study 

Proportional 
gain only 
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Advanced controller study continuing… 

•  Conclusions 
  NSTX advanced controller with mode phase has been tested 

numerically, 9 modes needed, large stability region for slow rotating 
mode. (RWM is usually locked in the NSTX experiments.) 

•  Next Steps 
  Study LQG with different torque, to improve robustness with respect 

to βN and mode rotation speed. 
  Off line comparison for mode phase and amplitude calculated with 

reduced order optimal observer and the present measured RWM 
sensor signal data SVD evaluation of n = 1 amplitude and phase 
from the experimental data 

  Redesign state-space for control coil current controller input 
  Analyze time delay effect on LQG performance 



Workshop on MHD Control 2008 – O.Katsuro-Hopkins


Thank you! 


