

Supported by

Kinetic effects on the ideal-wall limit and the resistive wall mode

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jon Menard (PPPL)

Z. Wang, Y. Liu (CCFE), S. Kaye, J.-K. Park, J. Berkery (CU), S. Sabbagh (CU) and the NSTX Research Team

18th Workshop on MHD Stability Control November 18, 2013 Santa Fe, New Mexico

*This work supported by US DoE contract DE-AC02-09CH11466

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Pressure-driven kink limit is strong physics constraint on maximum fusion performance

Talk focuses on ideal-wall mode (IWM), also treats RWM vs. Ω_{ϕ}

Background

- Characteristic growth rates and frequencies of RWM and IWM
 - RWM: $\gamma \tau_{wall} \sim 1$ and $\omega \tau_{wall} < 1$
 - IWM: $\gamma \tau_A \sim 1-10\% (\gamma \tau_{wall} >> 1) \text{ and } \omega \tau_A \sim \Omega_{\phi} \tau_A (1-30\%) (\omega \tau_{wall} >> 1)$
- Kinetic effects important for RWM (J. Berkery invited TI2.02, Thu AM)
 Publications: Berkery, et al. PRL 104 (2010) 035003, Sabbagh, et al., NF 50 (2010) 025020
 - Detetiere ered kirectie effecte lerrechturg europered fer NA/NA
- Rotation and kinetic effects largely unexplored for IWM
 - Such effects generally higher-order than fluid terms (∇p , J_{\parallel} , $|\delta B|^2$, wall)
- Calculations for NSTX indicate both rotation and kinetic effects can modify both IWM and RWM stability limits
 - High toroidal rotation generated by co-injected NBI in NSTX
 - Fast core rotation: Ω_{ϕ} / ω_{sound} up to ~1, Ω_{ϕ} / ω_{Alfven} ~ up to 0.1-0.3
 - Fluid/kinetic pressure is dominant instability drive in high- β ST plasmas

Study 3 classes of IWM-unstable plasmas spanning low to high β_N

- Low β_N limit ~3.5, often saturated/long-lived mode
 - $-q_{min} \sim 2-3$
 - Common in early phase of current flat-top
 - Higher fraction of beam pressure, momentum (lower n_e)
- Intermediate β_N limit ~ 5
 - $q_{min} \sim 1.2-1.5$
 - Typical good-performance H-mode, $H_{98} \sim 0.8$ -1.2
- Highest β_N limit ~ 6-6.5
 - $-q_{min} \sim 1$
 - "Enhanced Pedestal" H-mode \rightarrow high H₉₈ ~ 1.5-1.6
 - Broad pressure, rotation profiles, high edge rotation shear

MARS-K: self-consistent linear resistive MHD including toroidal rotation and drift-kinetic effects

Perturbed single-fluid linear MHD: Drift-kinetic effects in perturbed Y.Q. Liu, et al., Phys. Plasmas 15, 112503 2008 anisotropic pressure *p*: $(\gamma + in\Omega)\xi = \mathbf{v} + (\xi \cdot \nabla\Omega)R^2 \nabla \phi$ $\mathbf{p} = p\mathbf{I} + p_{\parallel}\hat{\mathbf{b}}\hat{\mathbf{b}} + p_{\perp}(\mathbf{I} - \hat{\mathbf{b}}\hat{\mathbf{b}})$ $p_{\parallel}e^{-i\omega t+in\phi} = \sum_{\alpha,i} \int d\Gamma M v_{\parallel}^2 f_L^1$ $\rho(\gamma + \textit{in}\Omega)v = j \times B + J \times Q - \nabla \cdot p$ $+\rho\left[2\Omega\hat{\mathbf{Z}}\times\mathbf{v}-(\mathbf{v}\cdot\nabla\Omega)R^{2}\nabla\phi\right] -\nabla\cdot(\rho\xi)\Omega\hat{\mathbf{Z}}\times\mathbf{V}_{0}$ $p_{\perp}e^{-i\omega t+in\phi} = \sum_{\perp} \int d\Gamma \frac{1}{2}Mv_{\perp}^2 f_L^1$ $f_L^1 = -f_{\epsilon}^0 \epsilon_k e^{-i\omega t + in\phi} \sum X_m^u H_{ml}^u \lambda_{\underline{m}l} e^{-in\widetilde{\phi}(t) + im\langle \dot{\chi} \rangle t + il\omega_b t}$ $(\gamma + in\Omega)\mathbf{Q} = \nabla \times (\mathbf{v} \times \mathbf{B}) + (\mathbf{Q} \cdot \nabla\Omega)R^2 \nabla \phi - \nabla \times (\eta \mathbf{j})$ $(\gamma + in\Omega)p = -\mathbf{v} \cdot \nabla P - \Gamma P \nabla \cdot \mathbf{v} \qquad \mathbf{j} = \nabla \times \mathbf{Q}$ $H_L = \frac{1}{\epsilon_{\iota}} [M v_{\parallel}^2 \vec{\kappa} \cdot \boldsymbol{\xi}_{\perp} + \mu (Q_{L\parallel} + \nabla B \cdot \boldsymbol{\xi}_{\perp})]$ Rotation and rotation shear effects: 🖌 Diamagnetic $n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\omega_{*T} + \omega_E] - \omega$ • Mode-particle resonance operator: $\rightarrow \lambda_{ml} =$ $n\overline{(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l]\omega_b - i\nu_{\text{eff}} - \omega}$ Transit and bounce Collisions Fast ions: analytic slowing-down f(v) model – isotropic or anisotropic This talk • Include toroidal flow only: $\mathbf{v}_{\phi} = \mathbf{R}\Omega_{\phi}(\psi)$ and $\omega_{\mathsf{E}} = \omega_{\mathsf{E}}(\psi)$

WNSTX-U

Study 3 classes of IWM-unstable plasmas spanning low to high β_N

- Low β_N limit ~ 3.5, often saturated/long-lived
 - $-q_{min} \sim 2-3$
 - Common in early phase of current flat-top
 - Higher fraction of beam pressure, momentum (lower n_e)
- Intermediate β_N limit ~ 5
 - q_{min} ~1.2-1.5
 - Typical good-performance H-mode, $H_{98} \sim 0.8$ -1.2
- Highest β_N limit ~ 6-6.5
 - $q_{min} \sim 1$
 - "Enhanced Pedestal" H-mode \rightarrow high H₉₈ ~ 1.5-1.6
 - Broad pressure, rotation profiles, high edge rotation shear

Saturated f=15-30kHz n=1 mode common during early I_P flat-top phase

🔘 NSTX-U

Fluid (non-kinetic) MARS-K calculations find: Rotation reduces IWL $\beta_N = 6 \rightarrow 3-3.5$

Fluid MARS marginal $\beta_N \sim 3 - 4$ consistent with experiment

Kinetic mode also destabilized by rotation

Kinetic mode tracked numerically by starting from fluid root and increasing kinetic fraction $\alpha_{\rm K} = 0 \rightarrow 1$ as $\Gamma = 5/3 \rightarrow 0$

🔘 NSTX-U

Kinetic stability limit similar to fluid limit: Marginal $\beta_N < 3.5$ far below low-rotation β_N limit of ~6

Real part of complex energy functional consistent with rotational destabilization ($\delta W_{rot} \le 0$) across minor radius

Destabilization from: Coriolis ($d\Omega/d\rho$), centrifugal, differential kinetic

() NSTX-U

Study 3 classes of IWM-unstable plasmas spanning low to high β_N

- Low β_N limit ~ 3.5, often saturated/long-lived
 - q_{min} ~ 2-3
 - Common in early phase of current flat-top
 - Higher fraction of beam pressure, momentum (lower n_e)

• Intermediate β_N limit ~ 5

- $q_{min} \sim 1.2-1.5$
- Typical good-performance H-mode, $H_{98} \sim 0.8$ -1.2
- Highest β_N limit ~ 6-6.5
 - $q_{min} \sim 1$
 - "Enhanced Pedestal" H-mode \rightarrow high H₉₈ ~ 1.5-1.6
 - Broad pressure, rotation profiles, high edge rotation shear

Small f=30kHz continuous n=1 mode precedes larger 20-25kHz n=1 bursts

WNSTX-U

Kinetic IWM β_N limit consistent with experiment, fluid calculation under-predicts experimental limit

Measured IWM real frequency more consistent with kinetic model than fluid model

() NSTX-U

IWM: Kinetic fast-ions destabilizing, thermals stabilizing

Implication: thermal damping stabilizes rotation-driven mode

IWM: Precession resonance dominates damping, highest β_N requires inclusion of passing resonance

High rotation reduces β_N limits for ideal wall mode (IWM), no-wall mode (NWM), and resistive wall mode (RWM)

fluid NWM limit, above fluid IWM limit, near kinetic IWM limit

(III) NSTX-U

RWM: Rotation can change fluid RWM eigenfunction and move regions of singular displacement away from rationals

WNSTX-U

2013 Mode Control Meeting - Menard

Precession resonance alone cannot provide passive RWM stabilization – next step: include bounce harmonics, passing

- Thermals are destabilizing
- Fast ion contribution to stability is small
- Fast + thermal similar to thermal
- Precession + bounce
 calculations underway
 → less destabilization

Study 3 classes of IWM-unstable plasmas spanning low to high β_N

- Low β_N limit ~ 3.5, often saturated/long-lived
 - q_{min} ~ 2-3
 - Common in early phase of current flat-top
 - Higher fraction of beam pressure, momentum (lower n_e)
- Intermediate β_N limit ~ 5
 - $q_{min} \sim 1.2-1.5$
 - Typical good-performance H-mode, $H_{98} \sim 0.8-1.2$
- Highest β_N limit ~ 6-6.5
 - q_{min} ~ 1
 - "Enhanced Pedestal" H-mode → high H₉₈ ~ 1.5-1.6
 - Broad pressure, rotation profiles, high edge rotation shear

Experimental characteristics of highest- β_N MHD

• $\beta_N = 6-6.5$ sustained for $2-3\tau_{r}$

- Oscillations from ELMs and bottom/limiter interactions
- Possible small RWM activity
- Only small core MHD (steady neutron rate)

- f = 50kHz mode causes 35% β_N drop ending high- β phase
 - Mode grows very fast (~100µs)
 - n-number difficult to determine
 - Possible that mode has n > 1

22

Kinetic IWM stability consistent with access to $\beta_N > 6$ Fluid calculation under-predicts experimental β_N

High again rotation reduces β_N limits for IWM, NWM, & RWM

- Fluid RWM β_N limit can extend above the fluid IWM limit
- Note: Fluid RWM β_N limit is lower than kinetic IWM limit
 - Possible operating window at very high β_N where fluid RWM stable

Precession resonance alone provides RWM passive stabilization (passive stability consistent with experiment)

IWM energy analysis near marginal stability elucidates trends from growth-rate scans

All cases: field-line bending+compression balances primarily ∇p

- Low β : J_{||} (low q shear) and high Ω_{ϕ} strongly destabilizing
- Mid β : Reduced destabilization from $J_{||} \& \Omega_{\phi}$ increases β limit
- High β : Large Ω_{ϕ}' at edge minimizes Ω_{ϕ} drive \rightarrow highest β

Summary

- Rotation, kinetic effects can modify IWM & RWM at high Ω_{ϕ} , β
 - (From APS): Rotation effects most pronounced for plasmas near rotation-shear enhanced interchange/Kelvin-Helmholtz (KH) threshold
 - High rotation shear near edge is most stable in theory and experiment
- Kinetic damping from thermal resonances can be sufficient to suppress rotation-driven IWM → access low-rotation IWL
- Fluid RWM β limits follow fluid NW and IW limits with rotation
- Kinetic IWM β limits closer to experiment than fluid limits
- Future work:
 - Understand kinetic damping of rotation-driven modes in more detail
 - Test more realistic fast-ion distribution functions anisotropic / TRANSP
 - Assess finite orbit width effects (see next talk) for fast, edge thermal ions
 - Assess modifications to RWM stability from rotation/rotation shear
 - Utilize off-axis NBI, NTV in NSTX-U to explore IWM, RWM limit vs. rotation

Backup

Analytic model of rotational-shear destabilization is being compared to MARS results and experiment

Model: low rotation, high rotation shear (Ming Chu, Phys. Plasmas, Vol. 5, No. 1, (1998) 183)

1. Ideal interchange criterion including rotation shear:

$$D_{\mathrm{I},\Omega} = D_{\mathrm{I}} + \frac{1}{4} \left(M_a^2 + A \right) + \frac{\beta_{\Gamma} M_s^2}{F(\beta_{\Gamma} - M_s^2)} \times \left[D_{\mathrm{I}} + \frac{1}{2} \left(\frac{1}{2} - H \right) \right]^2 > \mathbf{0}$$

Ideal Interchange Index w/o rotation Glasser, Greene, Johnson – Phys. Fluids (1975) 875

2. Kelvin-Helmholtz criterion:

M_a = (shear) Alfvén wave

excitation Mach number

 $\left(\frac{\partial\Omega}{\partial V}\right)^2 \left|\frac{\rho M \chi'^2}{(2\pi)^2}\right|$

 $M_s^2 > \beta_{\Gamma}$

$$\beta_{\Gamma} = \frac{\Gamma p}{\Gamma p + p'^2 (\langle B^2 / | \nabla V |^2 \rangle / \Lambda^2 F)}$$

R – comproscional Alfvén wave R

M_s = sound Alfvén wave excitation Mach number

$$M_s^2 = \frac{\chi'^2 (\partial \Omega / \partial V)^2 \langle B^2 \rangle \rho F}{p'^2 \langle B^2 / |\nabla V|^2 \rangle (2\pi)^2}$$

through sound wave coupling

Rotation shear'

destabilizes Alfvén wave directly

or

Experiment marginally stable to rotation-driven interchange/Kelvin-Helmholtz near half-radius

Comparison of cases for KH marginal rotation shear

- Low β case
 - Rotation shear mode not stabilized kinetically
- Medium β case
 - Nearly achieve no-rotation
 IWL via kinetic stabilization

High β case

 High edge rotation shear stabilizing – minimizes needed kinetic stabilization

Inclusion of thermal and fast-ions (TRANSP) in total pressure can significantly modify pressure profile shape

Inclusion of fast-ion pressure and angular momentum (computed from TRANSP) significantly lowers marginal β_N

- Increased pressure profile peaking from fast-ions lowers β_N limit from 7.7 to 6.1 at low rotation
- Effective β_N limit at experimental rotation reduced from 6.3 to ~3.4

Initial studies find anisotropic fast-ion distribution has damping vs. α_k , Γ trends similar to isotropic

Anisotropic fast-ion passing resonance can cause δW_{κ} singularities – investigating...

Real part of complex energy functional provides equation for growth-rate useful for understanding instability sources

Dispersion relation	Kinetic energy	Potential energy
$\delta K + \delta W = 0 \qquad \delta$	$\delta K = \frac{1}{2} \int d^3 x \rho \left(\gamma + in\Omega \right)^2 \left \vec{\xi}_{\perp} \right ^2$	$\delta W = -\frac{1}{2} \int d^3 x \mathbf{F} \cdot \boldsymbol{\xi}_{\perp}^*$
$\delta K_1 = -\frac{1}{2} \int d^3 x$	$\left \boldsymbol{\xi}_{\perp} \right ^{2}$ Growth rate equation $\left(\boldsymbol{\gamma}^{re} \right)^{2} = \left(\delta W_{K}^{re} + \boldsymbol{\varphi}^{re} \right)^{2}$	n: mode growth for $\delta W^{re} < 0$ $\delta W_F^{re} + \delta W_{vb} + \delta W_{rot}^{re}) / \delta K_1$
$\delta W_K = -\frac{1}{2} \int d^3 x \mathbf{F}^K \cdot \boldsymbol{\xi}_{\perp}^* \mathbf{F}^K =$	$-\nabla \cdot \mathbf{p}^{\text{kinetic}}$ $\delta W_{rot} =$	$\delta W_{\Omega} + \delta W_{d\Omega} + \delta W_{cf} + \delta K_2$
$\delta W_F^p = -rac{1}{2}\int d^3x {f F}^p\cdot \xi_\perp^*$	_	Coriolis - Ω $\delta W_{\Omega} = \frac{1}{2} \int d^3x \left[-2\rho \Omega (\gamma + in\Omega) \mathbf{Z} \times \vec{\xi}_1 \cdot \vec{\xi}_{\perp}^* \right]$
$=rac{1}{2}\int d^{3}x \left[(\xi_{\perp}\cdot abla P) abla \cdot \xi_{\perp}^{*} - ight]$	$+\Gamma P \nabla\cdot\xi ^{2}-\Gamma P(\nabla\cdot\xi)(\nabla\cdot\xi_{\parallel}^{*})]+S_{F}^{p}$	Coriolis - dΩ/d ρ
$\delta W_F^j = -rac{1}{2}\int d^3x \mathbf{F}^j \cdot \mathbf{\xi}_\perp^* = rac{1}{2}\int$	$\int d^3x Q ^2 + S_F^j$	$\delta W_{d\Omega} = \frac{1}{2} \int d^3 x R \left(2\rho \Omega \left(\vec{\xi}_1 \cdot \nabla \Omega \right) \vec{\xi}_{\perp \mathbf{R}}^* \right)$
$\delta W_F^Q = -\frac{1}{2} \int d^3 x \mathbf{F}^Q \cdot \boldsymbol{\xi}_{\perp}^* = \frac{1}{2} \int d^3 x \mathbf{F}^Q \cdot \boldsymbol{\xi}_{\perp}^*$	$\int d^3x \left[J_{\parallel} \hat{\mathbf{b}} \cdot \boldsymbol{\xi}_{\perp}^* \times \mathbf{Q}_{\perp} - \frac{Q_{\parallel}}{B} (\boldsymbol{\xi}_{\perp}^* \cdot \nabla P) \right]$	$\frac{\text{Centrifugal}}{\delta W_{cf}} = \frac{1}{2} \int d^3 x R \Omega^2 \nabla \cdot \left(\rho \vec{\xi}_{\perp}\right) \vec{\xi}_{\perp \mathbf{R}}^*$
$S_F^p = -rac{1}{2}\int \left[(\xi_\perp \cdot abla P) + \Gamma P abla \cdot \xi ight]$	$[\xi] \xi_{\perp}^* \cdot d\mathbf{s}$	Differential kinetic
$S_F^j = rac{1}{2} \int B Q_{\parallel} \xi_{\perp}^* \cdot d\mathbf{s}$	Note: n = -1 in MARS	$\delta K_2 = -\frac{1}{2} \int d^3 x \rho \left(\omega + n\Omega\right)^2 \left \vec{\xi}_{\perp}\right ^2$

🔘 NSTX-U