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Pressure-driven kink limit is strong physics 
constraint on maximum fusion performance 

• Modes grow rapidly above kink limit: 
–  γ ~ 1-10% of τA

-1 where τA ~ 1µs 
 

• Superconducting “ideal wall” can 
increase stable βN up to factor of 2 
 

• Real wall resistive  slow-growing 
“resistive wall mode” (RWM) 

–  γ τwall ~ 1  
– ms instead of µs time-scales 

 

• RWM can be stabilized with: 
– kinetic effects (rotation, dissipation) 
– active feedback control 
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Pfusion ∝ n2〈σv〉 ∝ p2 ∝ βT
2 BT

4 ∝ βN
4 BT

4 (1+κ2)2 / A fBS
2 

Talk focuses on ideal-wall mode (IWM), also treats RWM vs. Ωφ 

M. Chu, et al., Plasma Phys. Control. Fusion 52 (2010) 123001 
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Background 

• Characteristic growth rates and frequencies of RWM and IWM 
– RWM:   γτwall ~ 1 and  ωτwall < 1 
– IWM:  γτA ~ 1-10% (γτwall >> 1) and ωτA ~ ΩφτA (1-30%) (ωτwall >> 1) 

 

 

• Kinetic effects important for RWM (J. Berkery invited TI2.02, Thu AM) 
– Publications: Berkery, et al. PRL 104 (2010) 035003, Sabbagh, et al., NF 50 (2010) 025020 

 

• Rotation and kinetic effects largely unexplored for IWM 
– Such effects generally higher-order than fluid terms (∇p, J||, |δB|2, wall) 

 
 

• Calculations for NSTX indicate both rotation and kinetic 
effects can modify both IWM and RWM stability limits 
– High toroidal rotation generated by co-injected NBI in NSTX 

• Fast core rotation: Ωφ / ωsound up to ~1,  Ωφ / ωAlfven ~ up to 0.1-0.3 
– Fluid/kinetic pressure is dominant instability drive in high-β ST plasmas 
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Study 3 classes of IWM-unstable  
plasmas spanning low to high βN 

• Low βN limit ~3.5, often saturated/long-lived mode 
– qmin ~ 2-3  
– Common in early phase of current flat-top 
– Higher fraction of beam pressure, momentum (lower ne) 

 

• Intermediate βN limit ~ 5 
– qmin ~1.2-1.5 
– Typical good-performance H-mode, H98 ~ 0.8-1.2 

 

• Highest βN limit ~ 6-6.5 
– qmin ~ 1 
– “Enhanced Pedestal” H-mode  high H98 ~ 1.5-1.6 
– Broad pressure, rotation profiles, high edge rotation shear 

 4 
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MARS-K: self-consistent linear resistive MHD 
including toroidal rotation and drift-kinetic effects 

• Perturbed single-fluid linear MHD:  

• Mode-particle resonance operator: 

• Drift-kinetic effects in perturbed 
anisotropic pressure p: 

• Fast ions:  analytic slowing-down f(v) model – isotropic or anisotropic 

Y.Q. Liu, et al., Phys. Plasmas 15, 112503 2008 
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Precession ExB Transit and bounce Collisions 

Diamagnetic  

• Include toroidal flow only: vφ = RΩφ(ψ) and ωE  = ωE(ψ)  

• Rotation and rotation shear effects: 

This talk 



NSTX-U 2013 Mode Control Meeting - Menard 

Study 3 classes of IWM-unstable  
plasmas spanning low to high βN 

• Low βN limit ~ 3.5, often saturated/long-lived 
– qmin ~ 2-3  
– Common in early phase of current flat-top 
– Higher fraction of beam pressure, momentum (lower ne) 

 

• Intermediate βN limit ~ 5 
– qmin ~1.2-1.5 
– Typical good-performance H-mode, H98 ~ 0.8-1.2 

 

• Highest βN limit ~ 6-6.5 
– qmin ~ 1 
– “Enhanced Pedestal” H-mode  high H98 ~ 1.5-1.6 
– Broad pressure, rotation profiles, high edge rotation shear 
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Saturated f=15-30kHz n=1 mode  
common during early IP flat-top phase 

Mode clamps βN to ~3.5, 
reduces neutron rate ~20% 
sometimes slows  locks  disrupts 

7 

γeff τA ~ 1×10-3 

NSTX shot 138065 

Fixed PNBI = 3MW, IP = 800kA, βT=10-15% 
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Fluid (non-kinetic) MARS-K calculations find: 
Rotation reduces IWL βN = 6  3-3.5 
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Fluid MARS marginal βN ~ 3 – 4 consistent with experiment 

NSTX shot 138065, t=376ms MARS n=1 in fluid limit 

experimental value 

High rotation βN limit ~ 4.5  3.2 
for Ωφ(0)τA = 10  17% (experimental) 

Low rotation βN limit ~ 6 
for Ωφ(0)τA = 1  7% 

Experiment 
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Kinetic mode also destabilized by rotation 
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Kinetic mode tracked numerically by starting from fluid root 
and increasing kinetic fraction αK = 0  1 as Γ = 5/3  0 

Non-adiabatic δWkinetic fraction 
varied (αK=0  1) including: 

◄ No thermal or fast 
◄ Thermal and fast 
◄ Fast only 
◄ Thermal only 

Experimental rotation 
βN = 5.6 < low-rotation IWL 

γ variation from fluid to kinetic 
mode can be non-monotonic Kinetic mode γ ≈ fluid γ 

implies destabilization 
results from rotation 
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Kinetic stability limit similar to fluid limit: 
Marginal βN < 3.5 far below low-rotation βN limit of ~6 

Convergence issues: 
• Drift-kinetic MHD model 

assumes fluid Γ = 0 
  

• When Γ = 0, MARS can 
sometimes track wrong root 
or find spurious root 
 

• Solution:  take Γ  0 limit, 
monitor eigenfunctions for 
continuous trend vs. αk, β, Γ 

NSTX shot 138065, t=376ms Fluid and kinetic n=1 

Experimental βN for n=1 mode onset 
10 

Solid: Kinetic γ 

Dashed: Fluid γ 
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Real part of complex energy functional consistent with  
rotational destabilization (δWrot  ≤ 0) across minor radius 

Coriolis - Ω 

Coriolis - dΩ/dρ 

Centrifugal 

Differential kinetic (always destabilizing) 

NSTX shot 138065, t=376ms 
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Destabilization from: Coriolis (dΩ/dρ), centrifugal, differential kinetic 

< 0 

– 
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Study 3 classes of IWM-unstable  
plasmas spanning low to high βN 

• Low βN limit ~ 3.5, often saturated/long-lived 
– qmin ~ 2-3  
– Common in early phase of current flat-top 
– Higher fraction of beam pressure, momentum (lower ne) 

 

• Intermediate βN limit ~ 5 
– qmin ~1.2-1.5 
– Typical good-performance H-mode, H98 ~ 0.8-1.2 

 

• Highest βN limit ~ 6-6.5 
– qmin ~ 1 
– “Enhanced Pedestal” H-mode  high H98 ~ 1.5-1.6 
– Broad pressure, rotation profiles, high edge rotation shear 
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NSTX-U 2013 Mode Control Meeting - Menard 

Small f=30kHz continuous n=1 mode  
precedes larger 20-25kHz n=1 bursts 

γeff τA ~ 4×10-3 
First large n=1 burst   

20% drop in βN 
50% neutron rate drop 

Later n=1 modes  full disruption 
13 
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Kinetic IWM βN limit consistent with experiment,  
fluid calculation under-predicts experimental limit 

Fluid βN limit for low Ωφ 

Kinetic βN limit for experimental Ωφ 
(weakly dependent on fast-ion peaking factor) 

 
Fluid βN limit for experimental Ωφ (∆βN = -1.4 vs. low rotation) 
 

Experimental βN for n=1 mode onset 

NSTX shot 119621, t=610ms 

14 

Fast-ion p profiles used 
in kinetic calculations 
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Measured IWM real frequency more  
consistent with kinetic model than fluid model 

Fast-ion p profiles used 
in kinetic calculations 

Measured mode frequency 
NSTX shot 119621, t=610ms 

15 
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IWM: Kinetic fast-ions destabilizing,  
thermals stabilizing  

Fast ions only: kinetic γ 
exceeds all other γ values 

Thermals only: stabilizing 

Kinetic γ with no damping 
(non-adiabatic δWk = 0 limit) 

 Kinetic γ with thermal + 
fast: similar to fluid γ 

16 

Implication: thermal damping stabilizes rotation-driven mode 
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IWM:  Precession resonance dominates damping, 
highest βN requires inclusion of passing resonance 

Passing resonance alone provides little stabilization: γ ≈ γno-damp 

Precession resonance provides most stabilization 
Resonance occurs near location of ωr = ωE in core (not shown) 

Passing more important 
than bounce resonance 
after precession 

17 

no damping 
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High rotation reduces βN limits for ideal wall mode (IWM),  
no-wall mode (NWM), and resistive wall mode (RWM)  

• At high rotation, RWM marginal βN limit can extend below  
fluid NWM limit, above fluid IWM limit, near kinetic IWM limit 

Fluid limit (no kinetic effects) Fluid limit (no kinetic effects) 
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RWM:  Rotation can change fluid RWM eigenfunction and 
move regions of singular displacement away from rationals 

Solid:  Ωφ(0)τA = 0.005, Γ=5/3          Dashed:  Ωφ(0)τA = 0.20, Γ=0.0001 
 

Note: βN values 
are not identical 
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Precession resonance alone cannot provide passive RWM 
stabilization – next step: include bounce harmonics, passing 

• Thermals are 
destabilizing  

• Fast ion contribution to 
stability is small   

• Fast + thermal similar 
to thermal 

 
• Precession + bounce 

calculations underway 
 less destabilization 
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Study 3 classes of IWM-unstable  
plasmas spanning low to high βN 

• Low βN limit ~ 3.5, often saturated/long-lived 
– qmin ~ 2-3  
– Common in early phase of current flat-top 
– Higher fraction of beam pressure, momentum (lower ne) 

 

• Intermediate βN limit ~ 5 
– qmin ~1.2-1.5 
– Typical good-performance H-mode, H98 ~ 0.8-1.2 

 

• Highest βN limit ~ 6-6.5 
– qmin ~ 1 
– “Enhanced Pedestal” H-mode  high H98 ~ 1.5-1.6 
– Broad pressure, rotation profiles, high edge rotation shear 

 21 
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Experimental characteristics of highest-βN MHD 

•  βN = 6-6.5 sustained for 2-3τE 
– Oscillations from ELMs and 

bottom/limiter interactions 
– Possible small RWM activity 
– Only small core MHD (steady 

neutron rate) 
 
 

 

γeff τA ~ 1×10-2 

• f = 50kHz mode causes 35% 
βN drop ending high-β phase 

– Mode grows very fast (~100µs) 
– n-number difficult to determine 
– Possible that mode has n > 1 

 
 

NSTX shot 134991, t=760ms 

22 
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Kinetic IWM stability consistent with access to βN > 6 
Fluid calculation under-predicts experimental βN  

23 

Fluid βN limit ~6.55 
for low Ωφ 

Kinetic βN limit ~ 6.3 
for experimental Ωφ 

Fluid βN limit ~ 5.7 for experimental Ωφ 
Experimental βN range 

Rotational de-stabilization weaker (∆βN = -0.8 vs. low rotation) 

NSTX shot 134991, t=760ms 
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High again rotation reduces βN limits for IWM, NWM, & RWM 

• Fluid RWM βN limit can extend above the fluid IWM limit 
• Note: Fluid RWM βN limit is lower than kinetic IWM limit 

– Possible operating window at very high βN where fluid RWM stable 

Fluid limit (no kinetic effects) Fluid limit (no kinetic effects) 

NSTX shot 134991, t=760ms 

RWM Γ=10-4 
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Precession resonance alone provides RWM passive 
stabilization (passive stability consistent with experiment) 

• Thermals marginally 
stabilizing: αk-crit ~ 0.75 
 

• Fast ion contribution 
also stabilizing relative 
to fluid γ 
 

• Fast + thermal 
contributions strongly 
stabilizing: αk-crit ~ 0.02 
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IWM energy analysis near marginal stability  
elucidates trends from growth-rate scans 

-5
-4
-3
-2
-1
0
1
2
3
4
5

Magnetic + pressure Vacuum Parallel Current Rotation

Low beta  (138065)
Mid beta   (119621)
High beta (134991)

Rotation Ωφ Parallel current J|| Vacuum 

∇•p + δB bending 
and compression 

• All cases: field-line bending+compression balances primarily ∇p 

• Low β: J|| (low q shear) and high Ωφ strongly destabilizing 
• Mid β: Reduced destabilization from J|| & Ωφ increases β limit 
• High β:  Large Ωφꞌ at edge minimizes Ωφ drive  highest β 

26 

Terms in 
Re(δW) 

 

δWvac-b 

Note:  terms should sum to ≈ zero 
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Summary 

• Rotation, kinetic effects can modify IWM & RWM at high Ωφ, β 
 

– (From APS):  Rotation effects most pronounced for plasmas near 
rotation-shear enhanced interchange/Kelvin-Helmholtz (KH) threshold 

– High rotation shear near edge is most stable in theory and experiment 

• Kinetic damping from thermal resonances can be sufficient to 
suppress rotation-driven IWM  access low-rotation IWL 

• Fluid RWM β limits follow fluid NW and IW limits with rotation 
• Kinetic IWM β limits closer to experiment than fluid limits 
• Future work: 

– Understand kinetic damping of rotation-driven modes in more detail 
– Test more realistic fast-ion distribution functions – anisotropic / TRANSP 
– Assess finite orbit width effects (see next talk) – for fast, edge thermal ions 
– Assess modifications to RWM stability from rotation/rotation shear 
– Utilize off-axis NBI, NTV in NSTX-U to explore IWM, RWM limit vs. rotation 

 27 
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Backup 

 

28 
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Analytic model of rotational-shear destabilization  
is being compared to MARS results and experiment 

29 

Model: low rotation, high rotation shear   (Ming Chu, Phys. Plasmas, Vol. 5, No. 1, (1998) 183) 

> 0 

2. Kelvin-Helmholtz criterion: 
βΓ = compressional  Alfvén wave β  

Ma = (shear) Alfvén wave  
excitation Mach number 

Ms = sound Alfvén wave 
excitation Mach number 

1. Ideal interchange criterion including rotation shear: 

Ideal interchange index w/o rotation 
Glasser, Greene, Johnson – Phys. Fluids (1975) 875 

> 

Rotation shear  
destabilizes Alfvén wave directly    or    through sound wave coupling  
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Experiment marginally stable to rotation-driven 
interchange/Kelvin-Helmholtz near half-radius 

Chu model marginal Ωꞌ profiles: 
DI,Ω = 0     Ms

2 = βΓ   DI,Ω (Γ=0) = 0 
∇p dominant    KH dominant                 

Experimental Ωꞌ profile 

MARS full kinetic eigenfunction 
displacement largest near r/a~0.5 

m=2 component dominant (qmin~2)  

NSTX shot 138065, t=376ms 

30 
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Comparison of cases for KH marginal rotation shear 

• Low β case 
– Rotation shear mode not 

stabilized kinetically 
 

• Medium β case 
– Nearly achieve no-rotation 

IWL via kinetic stabilization 
 

• High β case 
– High edge rotation shear 

stabilizing – minimizes 
needed kinetic stabilization 

31 
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Inclusion of thermal and fast-ions (TRANSP) in total pressure 
can significantly modify pressure profile shape 

ρpol 

Total pressure (thermal + fast) 
Reconstruction       

(without kinetic pressure constraint) 
Thermal 

Fast 

Thermal + NBI    
(includes fast-ion angular momentum) 

Thermal (C6+) 

32 

NSTX shot 138065, t=376ms 
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Inclusion of fast-ion pressure and angular momentum 
(computed from TRANSP) significantly lowers marginal βN 

• Increased pressure 
profile peaking from 
fast-ions lowers βN 
limit from 7.7 to 6.1 
at low rotation 
 

• Effective βN limit at 
experimental 
rotation reduced 
from 6.3 to ~3.4 

NSTX shot 138065, t=376ms 

Ωφ(0)τA = 0.13 
Ωφ(0)τA = 0.04 

Ωφ(0)τA = 0.17 
Ωφ(0)τA = 0.02 

33 

FLUID CALCULATIONS 
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Initial studies find anisotropic fast-ion distribution  
has damping vs. αk, Γ trends similar to isotropic 

34 

Anisotropic Isotropic 

Anisotropic fast-ion passing resonance can cause δWK singularities – investigating… 
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Real part of complex energy functional provides equation for 
growth-rate useful for understanding instability sources 

Dispersion relation Kinetic energy Potential energy 

Coriolis - Ω 

Coriolis - dΩ/dρ 

Centrifugal 

Differential kinetic 

Growth rate equation:  mode growth for δWre < 0 

35 

Note:  n = -1 in MARS 
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