1st NIFS-CRC International Symposium and 1st Korea-Japan Workshop on E dge-Plasma and Surface Component Interactions in Steady State Magnetic Fusion Devices May 20-22nd, 2007

PISCES

PISCES

PISCES-B mixed material PSI experiments and their implications for ITER

M.J. Bald win, D. Nishijima, R.P. Doerner, R.P. Seraydarian, J. Hanna, G. De Temmerman

University of California, San Diego, La Jolla, CA 92093 USA

Y. Ueda

Graduate School of Engineering, Osaka University, Japan

K. Schmid and J. Roth

Max-Plank Institute for Plasmaphysics, Garching, Germany

ITER steady state PSI will involve mixed material surfaces.

- •PFC material is lost from walls due to:
	- –Diffusive or bursty transport
	- –Erosion during off normal events
	- –Toroidal asymmetries
- Material transport is caused by:
	- –Inward bursty transport of impurities –SOL flows
- Material migrates to divertor

–Degree of shielding in divertor plasma

PISCES is investigating mixed materials PSI in collaborations with Europe & Japan.

- EU Collaboration (2003 present)
	- –Studies of erosion, deuterium retention and codeposition properties of:
		- –D-Be plasma on C targets
		- –D-Be plasma on W targets
		- –Be targets (near Be melting point)
- Involved in TITAN program (2007 - 2013)
	- –Mixed plasma (D, He) species effects on W surface morphology
	- –Response of plasma facing materials (MFE, IFE) to transient power loads

The PISCES-B divertor plasma simulator is used to simulate ITER mixed materials PSI.

PISCES

• PISCES-B is contained within an isolated safety enclosure to prevent the release of Be dust.

PISCES

PISCES

ITER (edge)

A MBE effusion cell is used to provide a Be impurity flux in PISCES-B plasma.

PISCES

PISCES

• Veeco Applied HT MBE effusion Cell provides temperature controlled Be impurity seeding in the

*Normalized Be impurity io n fraction in deuteri u m plasma as a function of T***e***.*

Mechanical and ₹UCSD Jacobs **Aerospace Engineering**

PISCES

PISCES

Be-C experiments

Evolution of chemical erosion in Be seeded D plasma.

Properties of C target surfaces after exposure.

Extrapolation to ITER.

XPS analysis shows formation of (Be ²C) as exposure temperature, T ^s, is increased.

- A carbidic peak appears and a graphitic peak disappears in C 1s spectra.
- • In Be 1s spectra, metallic peak shifts to a carbidic peak.
- • Carbide forms more efficiently at higher surface temperature

n_{Be+}/n_e ~ 0.1 %,

Jacobs

Aerospace Engineering

Chemical erosion rate drops monotonically until graphite is converted to Be ²C.

- • Be ions implant into carbon surface and bond with carbon atoms to form beryllium carbide (Be₂C).
- • \bullet Be₂C in the surface may act to inhibit the reaction chain responsible for chemical erosion and also reduces physical sputtering of carbon atoms from the surface through dilution of surface C atoms.
- •• Similar effects have been noted for B doped graphites. See for example:

[Roth J 1999 *J. Nucl. Mater.* **²⁶⁶ –269** 51]

*PISCES***Carbon chemical erosion is mitigated in D-Be plasmas with characteristic decay time,** $\tau_{\mathsf{Be/C}}$ **.**

- CD band intensity near C target drops w/ time as Be erosion signal from target increases
- • The subtraction of CD band intensity taken in a region far from the target ($z \sim 70$ mm) is used to eliminate the effects of the intensity originating from wall carbon erosion

τ_{Be/C} decreases with increased Be ion conc. in plasma, $\textbf{c}_\texttt{Be}^{},$ but increases with E_i < 85 eV.

PISCES

PISCES

• \bullet $\,$ $\rm c_{\rm Be}$ scanned keeping other parameters, E_i , T $_\mathsf{s}$ and Γ_i constant.

• Deposited Be on C target can be more readily sputtered at higher E_i , thus resulting in a longer $\tau_{Be/C}$.

τ_{Be/C} strongly depends on T_s.

PISCES

- • $\bullet\,$ Higher T $_{\rm s}$ leads to reduced $\tau_{\rm Be/C}$ Increased carbidic reactionwith ${\sf T}_{\sf s}$ may play a role
- •Enthalpy of formation of $Be₂C$: $\Delta H(Be_2C) = -117.0 \pm 1.0$ kJ/mol

$$
\implies \tau_{Be2C} \propto \frac{1}{K_{Be2C}} \propto \exp\left(\frac{1.4e4}{T_s}\right)
$$

• Pure Be and $Be₂C$ must also contribute to the carbonerosion reduction especially at lower T $_{\rm s}$ and/or $\Delta {\rm H(Be_2C)}$ may be lower in a PSI environment than the equilibrium value.

In ITER, type one I ELMs may not be deleterious to erosion mitigation effects of Be.

PISCE

Mechanical and Aerospace Engineering Jacobs

PISCES

PISCES

Be-W experiments

Implications of Be-W all oying for ITER.

Properties of W target surfaces after exposure to Be seeded plasama.

Extrapolation to ITER.

*PISCES***Stable Be-W alloys are known and have melting points closer to that of Be than W.**

• Stable Be-W intermetallics are:

~2200°C(Be₂W)

~1500°C (Be₁₂W)

~1300°C (Be₂₂W)

• What will happen if Be transport into the W bulk is rapid enough that alloy formation is not limited to the near surface?

XPS confirms Be-W alloy formation on W target surfaces exposed in range 850-1320 K.

PISCES

Mechanical and 7UCSD Jacobs | **Aerospace Engineering**

The availability of surface Be is found to be critical for Be-W alloy formation (∆**t ~ 1 h).**

- $\bullet\,$ A 0.3 μ m Be $_{12}$ W layer forms at W-Be interface.
- $f_{\text{Be}^+}\Gamma_{\text{D}^+} > \gamma_{\text{D}\rightarrow\text{Be}}\Gamma_{\text{D}^+}$ $f_{\text{Be}^+}\Gamma_{\text{D}^+} > \Gamma_{\text{e}}$
- • Be_{12} W nucleation on W rich surface.
- No Be sub-surface.

$$
f_{\text{Be}^+} \Gamma_{\text{D}^+} < Y_{\text{D} \to \text{Be}} \Gamma_{\text{D}^+}
$$
\n
$$
f_{\text{Be}^+} \Gamma_{\text{D}^+} > \Gamma_{\text{e}}
$$

Be re-erosion and evaporation reduce surface Be availability, reducing alloy formation rate.

- Surface composition below stoichiometry for Be ²W. No Be sub-surface.
- $f_{\mathsf{Be}^+}\Gamma_{\mathsf{D}^+} > \mathsf{Y}_{\mathsf{D}\to\mathsf{Be}}\Gamma_{\mathsf{D}^+}$ $f_{\mathsf{Re}^+}\Gamma_{\mathsf{D}^+} << \Gamma_{\mathsf{e}}$
- \bullet Be₁₂W surface nucleation over almostidentical surface to (d).

$$
\begin{array}{l} f_{\mathsf{Be}^{\scriptscriptstyle +}} \Gamma_{\mathsf{D}^{\scriptscriptstyle +}} < \mathsf{Y}_{\mathsf{D} \rightarrow \mathsf{Be}} \Gamma_{\mathsf{D}^{\scriptscriptstyle +}} \\ f_{\mathsf{Be}^{\scriptscriptstyle +}} \Gamma_{\mathsf{D}^{\scriptscriptstyle +}} < < \Gamma_{\mathsf{e}} \end{array}
$$

PMI surface

*PISCES***Simple particle transport model predicts Be overlayer formation (most efficient alloying).**

Values taken from:W. Eckstein, IPP Report 9/17, (1998) D. R. Lide, CRC Handbook of Chem. & Phys., Internet Version (2005)

> **Mechanical and Jacobs | Aerospace Engineering**

PISCES

Mixed D-Be/C-He on W experiments

Effects of He and D-He plasma on W.

Influence of plasma impurities Be and C on these effects.

Similar morphology on W surface has been observed in PISCES-B pure He plasma.

 T_s = 1200 K, ∆t = 4290 s, Fluence = 2x10²⁶ He*/m², E_i = 25 eV

PISCES-B: pure He plasma NAGDIS-II: pure He plasma

PISCES

 ${\sf T}_{\rm s}$ = 1250 K, ∆t = 36,000 s, Fluence = 3.5x10²⁷ He+/m², E_i = 11 eV

N. Ohno et al., in IAEA-TM, Vienna, 2006

*PISCES*Scanning electron microscope (SEM) Transmission electron microscope (TEM) in Kyushu Univ.

> **Mechanical and** ₹UCSD I Jacobs | **Aerospace Engineering**

For controlled experiments, He + ion density must to be known.

• A spectroscopic technique can readily yield the He + ion density .

Use absolute intensity of He II line at 468.6 nm (I_{Hell})

Howev er, in D-plasma, with small concentrations of He species, it is hard to detect the He II line at 468.6 nm (I_{HeII}) .

Because of low $\boldsymbol{\mathsf n}_{\rm e}$ and $\boldsymbol{\mathsf D}_{2}$ molecular emission

A semi-empirical formula based on a 0-D model, validated with $\mathsf{I}_{\mathsf{Hell}}$ data taken in PISCES-B He, Ne-He, Ar-He and He rich D $_2$ -He plasmas is used to infer I_{Hell} in low He D₂-He mixture plasma…

Measured He II line intensities obey the model reasonably well.

PISCES

*PISCES*Line-integrated intensity: Due to "non-thermal hot electrons" $I_{HeII(4686)} =$ *L* 4π $\left\langle \sigma v \right\rangle_{HeII(4686)}$ n_en $_{He+}$ 10^{-4} 10⁻³ 10-² 10^{-1} 10 $^{\rm 0}$ 468 10 12 14 16 18 2 20 Ne-He Ar-HePure He $(V_d < 100 V)$ Pure He $(V_d > 100 V)$ $He-D₂$ fit 1 Hell(4686) $^{\prime}$ (N 2 * P_{He}) T_e [eV] He II at λ = 468.6 nm α = 0.93±0.49, β = 45.1±5.1 0-D continuity eq: ∂*n He* + ∂*t* = σ*v He*−> *He* + *nen He* − $n_{\scriptscriptstyle He+}$ τ _{He+} $n_{\scriptscriptstyle He+}$ $=\alpha^{'}\left\langle \sigma v\right\rangle _{He\rightarrow He^{+}}$ n_e P_{He} $n_{He} = \frac{P_{He}}{T_{He}}$ $I_{HeII} = \alpha n_e^2$ $\frac{2}{e}P_{He}$ exp $\vert \beta$ $T_{\scriptscriptstyle e}$ $\left(-\frac{\beta}{T_e}\right)$

> **Mechanical and** Jacobs | **Aerospace Engineering**

Effect of D₂-He plasmas at T_s = 1100-1200 K.

•**Plasma exposure time,** ∆**t, is a stronger influence than He ion flux or fluence**

> **Mechanical and** \bigstar UCSD | **Jacobs | Aerospace Engineering**

*PISCES***D₂-He mixture plasma w/wo Be induces morphology on W at Ts = 1100 K & Ei = 60 eV.**

 $\textsf{E}_\textsf{i}$ = 60 eV, T_s = 1100 K, Fluence = 10²⁵ He*/m²

n_{He+}/n_e ~ 10 %, $\Delta t = 4200$ s

• Finger-like structures observed, similar to pure He plasma

 D_2 -He plasma D_2 -He plasma with Be

n_{He+}/n_e ~ 10 %, n_{Be+}/n_e ~ 0.2 %, $\Delta t = 4200$ s

Ion bombardment at E_{i} = 60 eV prevents Be layer growth.

 \Rightarrow But, Be somewhat inhibits morphology.

PISCES

Mechanical and Jacobs | Aerospace Engineering

*PISCES***Be or C plasma impurities can inhibit morphology at T s = 1100 K & Ei = 15 eV.**

E_i = 15 eV, T_s = 1100 K, Fluence = 10²⁵ He*/m²

- Surface la y er composition determined b y x-ray microanaly sis (WDS).
- At E_i = 15 eV, Be and C deposited on W are not sputtered away.

*PISCES***Be-W alloy and W-C layers inhibit He induced morphology.**

Mechanical and

Jacobs | Aerospace Engineering

Summary

- **PISCES-B experiments continue to focus on mixed materials and/or mixed plasma species effects on steady state reactor relevant PMI.**
- **ITER will have significant levels of SOL Be impurities and diverted plasma will involve mixed species (D, Be, He) PMI with (C, W) PFC's.**
- • **Collaborations on Be/C/W have produced significant new results:** Be reacts readily with C forming Be₂C. **Be mitigates erosion effects on C. Be alloys readily with W. He induces morphology on W at elevated temperature. Be, C plasma impurities can mitigate He on W morphology but more work is needed.**

PISCES