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ITER steady state PSI will involve mixed 
material surfaces.

• PFC material is lost from walls due 
to:

–Diffusive or bursty transport
–Erosion during off normal events
–Toroidal asymmetries

• Material transport is caused by:
–Inward bursty transport of impurities
–SOL flows

• Material migrates to divertor
–Degree of shielding in divertor
plasma
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PISCES is investigating mixed materials PSI in 
collaborations with Europe & Japan.

• EU Collaboration (2003 – present)
–Studies of erosion, deuterium retention 
and codeposition properties of:

–D-Be plasma on C targets
–D-Be plasma on W targets 
–Be targets (near Be melting 
point)

• Involved in TITAN program
(2007 - 2013)

–Mixed plasma (D, He) species 
effects on W surface morphology
–Response of plasma facing 
materials (MFE, IFE) to transient 
power loads
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The PISCES-B divertor plasma simulator is 
used to simulate ITER mixed materials PSI.

 PISCES ITER (edge) 

Ion flux  (cm2s–1) 1017–1019 ~1019 
Ion energy  (eV) 20–300  (bias) 10–300  (thermal) 
Te  (eV) 4–40 1–100 
ne  (cm–3) 1012–1013 ~1013 
Be Imp. fraction (%) Up to a few % 1–10 (ITER) 
Pulse length  (s) Steady state 1000 
PSI materials C, W, Be C, W, Be .. 
Plasma species H, D, He H, D, T, He 

 

• PISCES-B is contained 
within an isolated safety 
enclosure to prevent the 
release of Be dust. 
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A MBE effusion cell is used to provide a Be 
impurity flux in PISCES-B plasma.

Normalized Be impurity ion fraction in
deuterium plasma as a function of Te.
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For Te above 7 eV all Be is ionized.
(ionization path length at 6eV is ~1 cm)
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Be-C experiments

Evolution of chemical erosion in Be seeded D plasma.

Properties of C target surfaces after exposure.

Extrapolation to ITER.
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XPS analysis shows formation of (Be2C) as 
exposure temperature, Ts, is increased.

D ion fluence ~ 1.2x1026 m-2

nBe+/ne ~ 0.1 %,

• A carbidic peak appears and a 
graphitic peak disappears in C 1s 
spectra.

• In Be 1s spectra, metallic peak 
shifts to a carbidic peak.

• Carbide forms more efficiently at 
higher surface temperature
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Chemical erosion rate drops monotonically 
until graphite is converted to Be2C. 

Be2C• Be ions implant into carbon 
surface and bond with carbon atoms 
to form beryllium carbide (Be2C).

• Be2C in the surface may act to 
inhibit the reaction chain 
responsible for chemical erosion 
and also reduces physical sputtering 
of carbon atoms from the surface 
through dilution of surface C atoms.

• Similar effects have been noted 
for B doped graphites.  See for 
example:
[Roth J 1999 J. Nucl. Mater. 266–269 51]
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Carbon chemical erosion is mitigated in D-Be 
plasmas with characteristic decay time, τBe/C.

• CD band intensity near C 
target drops w/ time as Be 
erosion signal from target 
increases

• The subtraction of CD band 
intensity taken in a region far 
from the target (z ~ 70 mm) is 
used to eliminate the effects of 
the intensity originating from wall 
carbon erosion
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τBe/C decreases with increased Be ion conc. in 
plasma,  cBe, but increases with Ei < 85 eV.
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• cBe scanned keeping
other parameters,
Ei, Ts and Γi constant.

• Deposited Be on C target
can be more readily sputtered
at higher Ei, thus resulting
in a longer τBe/C.
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τBe/C strongly depends on Ts.

• Higher Ts leads to reduced τBe/C
Increased carbidic reaction
with Ts may play a role

• Enthalpy of formation of Be2C:
∆H(Be2C) = -117.0±1.0 kJ/mol

• Pure Be and Be2C must also
contribute to the carbon
erosion reduction especially at
lower Ts and/or ∆H(Be2C)
may be lower in a PSI environment
than the equilibrium value.
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In ITER, type one I ELMs may not be 
deleterious to erosion mitigation effects of Be. 
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10-7 cBe

-1.9±0.1 Ei
0.9±0.3 Γi
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x exp((4.8±0.5)x103/Ts)
• τBe/C has a negative power 
law dependence on Γi.

• At higher fluxes, Be 
redeposition fraction is larger 
leading to increased τBe/C

• Under ITER like conditiions 
cBe = 0.05, Ei = 20 eV
Ts = 1200 K, Γi = 1023 m-2s-1

Federici et al., JNM 266-269 (1999)

τBe/C ~ 6 ms << 1 s (ITER)
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Be-W experiments

Implications of Be-W alloying for ITER.

Properties of W target surfaces after exposure to Be seeded 
plasama.

Extrapolation to ITER.
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Stable Be-W alloys are known and have 
melting points closer to that of Be than W.
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• Stable Be-W inter-
metallics are:

~2200°C  (Be2W)

~1500°C  (Be12W)

~1300°C  (Be22W)

• What will happen if Be 
transport into the W bulk is 
rapid enough that alloy 
formation is not limited to 
the near surface?
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XPS confirms Be-W alloy formation on W 
target surfaces exposed in range 850-1320 K.

• Be-W alloy line 
shifts are consistent 
with:
Wiltner & Linsmeier,
JNM 337–339 
(2005)
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The availability of surface Be is found to be 
critical for Be-W alloy formation (∆t ~ 1 h).

• A 0.3 µm Be12W
layer forms at W-Be
interface.

• Be12W nucleation
on W rich surface.

• No Be sub-surface.
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Be re-erosion and evaporation reduce surface 
Be availability, reducing alloy formation rate.

• Surface composit-
ion below stoichio-
metry for Be2W.  No Be
sub-surface.

• Be12W surface
nucleation over almost
identical surface to (d).
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Simple particle transport model predicts Be 
overlayer formation (most efficient alloying).

Ts  (K)
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Values taken from:
W. Eckstein, IPP Report 9/17, (1998)
D. R. Lide, CRC Handbook of Chem. & Phys., Internet Version (2005)
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Mixed D-Be/C-He on W 
experiments

Effects of He and D-He plasma on W.

Influence of plasma impurities Be and C on these effects.
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Similar morphology on W surface has been 
observed in PISCES-B pure He plasma.

PISCES-B: pure He plasma NAGDIS-II: pure He plasma

Ts = 1200 K, ∆t = 4290 s, 
Fluence = 2x1026 He+/m2, Ei = 25 eV

Ts = 1250 K, ∆t = 36,000 s, 
Fluence = 3.5x1027 He+/m2, Ei = 11 eV

N. Ohno et al., in IAEA-TM, Vienna, 2006

Scanning electron microscope (SEM) Transmission electron microscope (TEM)
in Kyushu Univ.
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For controlled experiments, 
He+ ion density must to be known.

A spectroscopic technique can readily yield 
the He+ ion density .

Use absolute intensity of He II line at 468.6 nm (IHeII)

However, in D-plasma, with small concentrations of He species, 
it is hard to detect the He II line at 468.6 nm (IHeII)).

Because of low ne and D2 molecular emission

A semi-empirical formula based on a 0-D model, validated with  
IHeII data taken in PISCES-B He, Ne-He, Ar-He and He rich D2-He 
plasmas is used to infer IHeII in low He D2-He mixture plasma…

3
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Measured He II line intensities obey the 
model reasonably well.

Line-integrated intensity: Due to “non-thermal hot electrons”
IHeII (4686) = L

4π
σv
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Effect of D2-He plasmas at Ts = 1100-1200 K.

D2-He plasma, Ei = 60 eV
nHe+/ne ~ 10 %
∆t = 4200 s
1025 He+/m2

He plasma, Ei = 60 eV

∆t = 420 s
1025 He+/m2

He plasma, Ei = 25 eV

∆t = 4290 s
2x1026 He+/m2

• Plasma exposure time, ∆t, is a stronger influence than He ion flux or fluence 
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D2-He mixture plasma w/wo Be induces 
morphology on W at Ts = 1100 K & Ei = 60 eV.
Ei = 60 eV, Ts = 1100 K, Fluence = 1025 He+/m2

D2-He plasma D2-He plasma with Be
nHe+/ne ~ 10 %,
∆t = 4200 s

nHe+/ne ~ 10 %, nBe+/ne ~ 0.2 %, 
∆t = 4200 s

Finger-like structures observed, 
similar to pure He plasma 

Ion bombardment at Ei = 60 eV
prevents Be layer growth.

But, Be somewhat inhibits morphology.

7



PISCES

PISCES

Be or C plasma impurities can inhibit 
morphology at Ts = 1100 K & Ei = 15 eV.

Ei = 15 eV, Ts = 1100 K, Fluence = 1025 He+/m2

D2-He plasma with Be D2-He plasma with C
nHe+/ne ~ 10 %, nBe+/ne ~ 0.5 %, 
∆t = 5000 s

nHe+/ne ~ 10 %, nC+/ne < 0.1 %, 
∆t = 3600 s

RN01312007

Be12W
layer

RN01292007

95% C
layer

Surface layer composition determined by x-ray microanalysis (WDS).

At Ei = 15 eV, Be and C deposited on W are not sputtered away. 

Be-W alloy and W-C layers inhibit He induced morphology.
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Summary

• PISCES-B experiments continue to focus on mixed materials 
and/or mixed plasma species effects on steady state reactor relevant 
PMI.

• ITER will have significant levels of SOL Be impurities and diverted 
plasma will involve mixed species (D, Be, He) PMI with (C, W) PFC’s.

• Collaborations on Be/C/W have produced significant new results:
Be reacts readily with C forming Be2C.
Be mitigates erosion effects on C.
Be alloys readily with W.
He induces morphology on W at elevated temperature.
Be, C plasma impurities can mitigate He on W morphology

but more work is needed.
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