1st NIFS-CRC International Symposium and 1st Korea-Japan Workshop on Edge-Plasma and Surface Component Interactions in Steady State Magnetic Fusion Devices May 20-22nd, 2007

PISCES

PISCES-B mixed material PSI experiments and their implications for ITER

M.J. Baldwin, D. Nishijima, R.P. Doerner, R.P. Seraydarian, J. Hanna, G. De Temmerman

University of California, San Diego, La Jolla, CA 92093 USA

Y. Ueda

Graduate School of Engineering, Osaka University, Japan

K. Schmid and J. Roth

Max-Plank Institute for Plasmaphysics, Garching, Germany

ITER steady state PSI will involve mixed material surfaces.

- PFC material is lost from walls due to:
 - -Diffusive or bursty transport
 - -Erosion during off normal events
 - -Toroidal asymmetries
- Material transport is caused by:
 - –Inward bursty transport of impurities–SOL flows
- Material migrates to divertor

-Degree of shielding in divertor plasma

PISCES is investigating mixed materials PSI in collaborations with Europe & Japan.

- EU Collaboration (2003 present)
 - -Studies of erosion, deuterium retention and codeposition properties of:
 - –D-Be plasma on C targets
 - -D-Be plasma on W targets
 - -Be targets (near Be melting point)
- Involved in TITAN program (2007 2013)
 - -Mixed plasma (D, He) species effects on W surface morphology
 - -Response of plasma facing materials (MFE, IFE) to transient power loads

The PISCES-B divertor plasma simulator is used to simulate ITER mixed materials PSI.

PISCES

• PISCES-B is contained within an isolated safety enclosure to prevent the release of Be dust.

lon flux (cm^2s^{-1})	10 ¹⁷ –10 ¹⁹	~10 ¹⁹
lon energy (eV)	20–300 (bias)	10–300 (thermal)
T _e (eV)	4–40	1–100
n _e (cm ⁻³)	10 ¹² –10 ¹³	~10 ¹³
Be Imp. fraction (%)	Up to a few %	1–10 (ITER)
Pulse length (s)	Steady state	1000
PSI materials	C, W, Be	C, W, Be
Plasma species	H, D, He	H, D, T, He

PISCES

PISCES ·

ITER (edge)

A MBE effusion cell is used to provide a Be impurity flux in PISCES-B plasma.

PISCES

PISCES

 Veeco Applied HT MBE effusion Cell provides temperature controlled Be impurity seeding in the plasma

Normalized Be impurity ion fraction in deuterium plasma as a function of T_a.

CSD Mechanical and Jacobs Aerospace Engineering

PISCES

PISCES

Be-C experiments

Evolution of chemical erosion in Be seeded D plasma.

Properties of C target surfaces after exposure.

Extrapolation to ITER.

XPS analysis shows formation of (Be₂C) as exposure temperature, T_s , is increased.

- A carbidic peak appears and a graphitic peak disappears in C 1s spectra.
- In Be 1s spectra, metallic peak shifts to a carbidic peak.
- Carbide forms more efficiently at higher surface temperature

 $n_{Be+}/n_{e} \sim 0.1$ %,

Chemical erosion rate drops monotonically until graphite is converted to Be₂C.

- Be ions implant into carbon surface and bond with carbon atoms to form beryllium carbide (Be₂C).
- Be₂C in the surface may act to inhibit the reaction chain responsible for chemical erosion and also reduces physical sputtering of carbon atoms from the surface through dilution of surface C atoms.
- Similar effects have been noted for B doped graphites. See for example:

[Roth J 1999 J. Nucl. Mater. 266–269 51]

Carbon chemical erosion is mitigated in D-Be plasmas with characteristic decay time, $\tau_{\text{Be/C}}$.

- CD band intensity near C target drops w/ time as Be erosion signal from target increases
- The subtraction of CD band intensity taken in a region far from the target ($z \sim 70$ mm) is used to eliminate the effects of the intensity originating from wall carbon erosion

$\tau_{Be/C}$ decreases with increased Be ion conc. in plasma, c_{Be} , but increases with $E_i < 85 \text{ eV}$.

PISCES -

PISCES

• c_{Be} scanned keeping other parameters, E_i , T_s and Γ_i constant. • Deposited Be on C target can be more readily sputtered at higher E_i , thus resulting in a longer $\tau_{Be/C}$.

$\tau_{\text{Be/C}}$ strongly depends on $\textbf{T}_{s}.$

PISCES

- Higher T_s leads to reduced $\tau_{Be/C}$ Increased carbidic reaction with T_s may play a role
- Enthalpy of formation of Be_2C : $\Delta H(Be_2C) = -117.0 \pm 1.0 \text{ kJ/mol}$

$$\implies \tau_{Be2C} \propto \frac{1}{K_{Be2C}} \propto \exp\left(\frac{1.4e4}{T_s}\right)$$

• Pure Be and Be₂C must also contribute to the carbon erosion reduction especially at lower T_s and/or $\Delta H(Be_2C)$ may be lower in a PSI environment than the equilibrium value.

In ITER, type one I ELMs may not be deleterious to erosion mitigation effects of Be.

PISCES

UCSD | Mechanical and Jacobs | Aerospace Engineering

PISCES

PISCES

Be-W experiments

Implications of Be-W alloying for ITER.

Properties of W target surfaces after exposure to Be seeded plasama.

Extrapolation to ITER.

Stable Be-W alloys are known and have melting points closer to that of Be than W.

• Stable Be-W intermetallics are:

~2200°C (Be₂W)

~1500°C (Be₁₂W)

~1300°C (Be₂₂W)

• What will happen if Be transport into the W bulk is rapid enough that alloy formation is not limited to the near surface?

XPS confirms Be-W alloy formation on W target surfaces exposed in range 850-1320 K.

PISCES ·

CODE Aerospace Engineering

The availability of surface Be is found to be critical for Be-W alloy formation ($\Delta t \sim 1 h$).

- A 0.3 μ m Be₁₂W layer forms at W-Be interface.
- $$\begin{split} & \textit{f}_{\text{Be}^+} \Gamma_{\text{D}^+} > \textit{Y}_{\text{D} \rightarrow \text{Be}} \Gamma_{\text{D}^+} \\ & \textit{f}_{\text{Be}^+} \Gamma_{\text{D}^+} > \Gamma_{\text{e}} \end{split}$$
- Be₁₂W nucleation on W rich surface.
- No Be sub-surface.

CODE Aerospace Engineering

Be re-erosion and evaporation reduce surface Be availability, reducing alloy formation rate.

- Surface composition below stoichiometry for Be₂W. No Be sub-surface.
- $$\begin{split} &f_{\mathrm{Be^{+}}}\Gamma_{\mathrm{D^{+}}}>Y_{\mathrm{D}\rightarrow\mathrm{Be}}\Gamma_{\mathrm{D^{+}}}\\ &f_{\mathrm{Be^{+}}}\Gamma_{\mathrm{D^{+}}}<<\Gamma_{\mathrm{e}} \end{split}$$
- Be₁₂W surface nucleation over almost identical surface to (d).

$$\begin{split} &f_{\mathsf{B}\mathsf{e}^+}\Gamma_{\mathsf{D}^+} < Y_{\mathsf{D}\to\mathsf{B}\mathsf{e}}\Gamma_{\mathsf{D}^+} \\ &f_{\mathsf{B}\mathsf{e}^+}\Gamma_{\mathsf{D}^+} << \Gamma_{\mathsf{e}} \end{split}$$

Be₄₂W₅₈ E_{ion} ~ 10 eV T ∼ 1320 K $f_{\rm Re} = 0.001$ 0000 UC PISCES 2 Mm RN 04132005 PMI surface Be₉₂W₈ $E_{\rm ion} \sim 60 \ {\rm eV}$ ~ 1320 K $f_{\rm m} = 0.004$ $\overline{1}$ Be₄₈W₅₂

2 Mm

UC PISCES

PISCES

PMI surface

RN 06232005

Simple particle transport model predicts Be overlayer formation (most efficient alloying).

Values taken from: W. Eckstein, IPP Report **9/17**, (1998) D. R. Lide, CRC Handbook of Chem. & Phys., Internet Version (2005)

CSD Mechanical and Jacobs Aerospace Engineering

PISCES

Mixed D-Be/C-He on W experiments

Effects of He and D-He plasma on W.

Influence of plasma impurities Be and C on these effects.

Similar morphology on W surface has been observed in PISCES-B pure He plasma.

PISCES-B: pure He plasma

T_s = 1200 K, Δt = 4290 s, Fluence = 2x10²⁶ He⁺/m², E_i = 25 eV

Scanning electron microscope (SEM)

NAGDIS-II: pure He plasma

PISCES

T_s = 1250 K, Δt = 36,000 s, Fluence = 3.5x10²⁷ He⁺/m², E_i = 11 eV

N. Ohno et al., in IAEA-TM, Vienna, 2006

Transmission electron microscope (TEM) in Kyushu Univ.

UCSD | Mechanical and Jacobs | Aerospace Engineering

For controlled experiments, He⁺ ion density must to be known.

 A spectroscopic technique can readily yield the He⁺ ion density.

Use absolute intensity of He II line at 468.6 nm (I_{HeII})

 However, in D-plasma, with small concentrations of He species, it is hard to detect the He II line at 468.6 nm (I_{Hell}).

Because of low n_e and D_2 molecular emission

 A semi-empirical formula based on a 0-D model, validated with I_{Hell} data taken in PISCES-B He, Ne-He, Ar-He and He rich D₂-He plasmas is used to infer I_{Hell} in low He D₂-He mixture plasma...

Measured He II line intensities obey the model reasonably well.

PISCES

UCSD Mechanical and Jacobs Aerospace Engineering

Effect of D_2 -He plasmas at $T_s = 1100-1200$ K.

Plasma exposure time, ∆t, is a stronger influence than He ion flux or fluence

PISCES -

D_2 -He mixture plasma w/wo Be induces morphology on W at $T_s = 1100$ K & $E_i = 60$ eV.

 $E_i = 60 \text{ eV}, T_s = 1100 \text{ K}, \text{ Fluence} = 10^{25} \text{ He}^+/\text{m}^2$

D₂-He plasma $n_{He+}/n_e \sim 10$ %, $\Delta t = 4200$ s

• Finger-like structures observed, similar to pure He plasma

D₂-He plasma with Be

 $n_{He+}/n_e \sim 10$ %, $n_{Be+}/n_e \sim 0.2$ %, $\Delta t = 4200 \text{ s}$

 Ion bombardment at E_i = 60 eV prevents Be layer growth.

But, Be somewhat inhibits morphology.

PISCES

CODE Mechanical and Jacobs Aerospace Engineering

Be or C plasma impurities can inhibit morphology at T_s = 1100 K & E_i = 15 eV.

 $E_i = 15 \text{ eV}, T_s = 1100 \text{ K}, \text{ Fluence} = 10^{25} \text{ He}^+/\text{m}^2$

- Surface layer composition determined by x-ray microanalysis (WDS).
- At $E_i = 15 \text{ eV}$, Be and C deposited on W are not sputtered away.

Be-W alloy and W-C layers inhibit He induced morphology. **PISCES** —

Mechanical and

Jacobs | Aerospace Engineering

Summary

 PISCES-B experiments continue to focus on mixed materials and/or mixed plasma species effects on steady state reactor relevant PMI.

PISCES

- ITER will have significant levels of SOL Be impurities and diverted plasma will involve mixed species (D, Be, He) PMI with (C, W) PFC's.
- Collaborations on Be/C/W have produced significant new results: Be reacts readily with C forming Be₂C. Be mitigates erosion effects on C. Be alloys readily with W. He induces morphology on W at elevated temperature. Be, C plasma impurities can mitigate He on W morphology but more work is needed.