

PSI-issues in FTU

G. Mazzitelli a

M.L. Apicella a, V. Pericoli Ridolfinia, G. Maddaluno a , V. Lazarev b,A. Alekseyev b, A. Vertkov c, I. Lyublinski, R. Zagórskid and FTU team a

a Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Rome, Italy, b TRINITI, Troitsk, Moscow reg., Russia, c "RED STAR", Moscow, Russia d Institute of Plasma Physics and Laser Microfusion, PO Box 49, PL-00-908, Warsaw, Poland

OUTLINE

- **1. Liquid Lithium Limiter Experiment**
- **2. Disruption mitigation by ECRH**
- **3. Dust measurement**

2

4. Manufacturing and characterisation of Rhodium coated molybdenum mirrors

Associazione EURATOM ENEA sulla Fusione

1. Liquid Lithium Limiter Experiment

PHYSICAL ISSUES

• **Wall Conditioning Lithization of vacuum vessel shot by shot**

4

• **Effects on plasma discharges Z**_{eff}, Recycling, Density limit, P_{rad}, etc

TECHNOLOGICAL ISSUES

 \bullet **To study J**×**B effects on liquid Lithium**

On DIII-D, J [×] **B forces on liquid lithium caused MHD instabilities on plasma due to a strong influx of Li. We have tested the Russian concept to solve this problem Capillary Porous System (CPS)**

• **To study heat loads, damage of Liquid Lithium Limiter (LLL) in a medium size high field tokamak FTU**

Liquid Lithium Limiter

\triangleright The LLL system is composed by three similar units Capillary Porous System (CPS)

CPS is made as ^a matt from wire meshes with porous radius 15 μ**m and wire diameter 30** μ**^m Structural material of wires is S.S.**

IFF

Meshes filled with Li

E ZE

IFP

Liquid Lithium Limiter

Melting point 180.6 °C Boiling point 1342 °C

Total lithium area $\sim 170 \text{ cm}^2$ **Plasma interacting area ~ 50- 85 cm2 Total amount of lithium** ≅ **80 g LLL initial temperature > 200oC**

1. Liquid Lithium Limiter Experiment

9

Discharges without LLL

Lithization Procedure

- Before the insertion on FTU, the lithium limiter is heated up to the liquid phase $(210 \degree C)$
- Lithization is performed by doing three equal shots with LLL 2-2.55 cm away from the LCMS and by monitoring the temporal evolution of Li III line intensity in the VUV spectrum
- •About 0.5 -1.0×10²¹ Li atoms are produced by physical sputtering plus evaporation (~ 10 monolayers)
- After these shots, the LLL is extracted and the lithization is studied in the following plasma discharges

Lithization Procedure

EN

IFF

12

Comparison between Lithization and BoronizationWith higher T_e at the edge reduced MHD occurs

FTU: shots with similar parameters but with vessel:

Zeff was well below 2 during all the experimental campaign

EVE

IFF

Zeff is always well below 2 with lithizated wall

In the VUV spectrum the prominent line is Li IIIO, Mo and are strongly reduced respectively by ^a

factor 3.5 and 1.8

Impurities

Strong D2 pumping capability

EVE,

IFF

Recovery from disruptions

Plasma Restart

FP

ENEN

Associazione EURATOM ENEA sulla Fusione

E/F

IFP

SOL physics with lithized walls - $n_e(r)$ **and** $T_e(r)$ **: experiment and code (TECXY)**

SAME Qinp,SOL YET QUITE HIGH ∆Te

Set of three reciprocating probes at $\theta \sim 0^{\circ}$, -70° and +70°, each with an array of Lelectrodes (overall sampled angle $\sim\!70^{\circ})$ + two fixed L-electrodes on the LLL

Energy confinement time

By transport analysis performed with JETTO code [3] the energy confinement time in**lithizated** and **boronized** discharges results higher by a factor of **1.3** with respect to **metallic** discharge**.**

EAE

IFF

1.Liquid Lithium Limiter Experiment

Discharges with LLL

Associazione EURATOM ENEA sulla Fusione

LLL inserted - modification of SOL parameters

CCD camera view: the bottom brigth annular ring develops just in between LLL and TZM

#28568 - I_p=0.5MA,n_e=1.10²⁰m^{-3,} B_t=6T

002249

3D sketch (TECXY) of P_{rad} Most (60%) Li radiation (not in coronal equilibrium) in between TZM and LLL Strong interaction plasma - LLL \Rightarrow also density peaks in front of LLL => shorter λ_n

ER

LLL inserted - modification of main parameters
#28508 & #28510 - time evolution of n_a and H_a

#28510 evolution of the line density profile 2.5 non-inverted CO₂ interferometer data $0.5, 0.6, 0.7$ s $\overline{2}$ 1.5 10^{20} m⁻³ change in the profile slope $0.28 s$ (marfe) r/a ~0.7 $0.2 s$ 0.5 $8_{.8}^{\circ}$ 0.9 1.2 1.1 1.3 Major Radius [m]

IFP

 $\text{\#28510: LLL inserted }$ -1.4 cm in the SOL: MARFE desappears at 0.31 s - high particle confinament/high peaked density phase starts #28508: LLL outside.

DENSITY BARRIER ?? Time of profiles at the vertical grey lines of the aside plot

Peaked density profiles

Shot 28510

Shot 30362 15/05/07

Thermal analysis

deviation from ANSYS calculation at about 1s is probably due to Li radiation in front of the limiter surface.

IFP

979)

Calculation with TECXY code support this hypothesis

High capability to sustain high thermal loads

EAE

IFP

ENEN

IFP

Problems

Discharge with additional Power

LLL less than 1 cm from LCMS

Next Step : A new panel type liquid lithium limiter

CONCLUSIONS

•**Lithization is a very good and effective tool for plasma operations**

•**Exposition of a liquid surface on tokamak has been done on FTU with very promising results**

ECRH Disruption Mitigation on FTU

G. Granucci, B. Esposito et al., paper in progress

- **Disruption avoidance in FTU has been obtained by applying ECRH in both Mo injection induced and density limit disruptions.**
- **To avoid disruptions ECRH has to be injected in correspondence of the location of q surfaces q=1-3/2-2 as inferred by MHD analysis**

ECRH Disruption Mitigation on FTU

ECRH Disruption Mitigation on FTU

Lithized Wall (October 2006)

- **ECRH Deposition scan by poloidal steering**
- **Power from 2 gyrotrons** ≈**0.75 MW sufficient to stabilize disruptive modes**
- **Disruption avoidance occurs at 2 locations:** $r_{\text{dep}} = 4 \text{ cm} \rightarrow q = 3/2$ r_{dep} =10 cm \rightarrow q=2
- **Detailed analysis on-going**

- • **The FTU Thomson scattering diagnostic has been used to measure the density and size of dust particles following ^plasma disruptions** [1]**.**
- •• A dust density of the order of 10^7 m − **3 has been found.**
- • **The Rayleigh approximation was used to determine the particle size, which is of the order of 0.1** μ**m and less.**

[1] Evidence of dust in FTU from Thomson Scattering diagnostic measurements **E. Giovannozzi, C. Castaldo, G. Maddaluno, Proc. 33rd EPS Conf. (Roma 2006) vol. 30I(ECA) (2006) P-2.093**

- \bullet The detection system consists of 19 polychromators, each of them being provided with 5 spectral channels.
- \bullet Four channels are used during the discharges to measure Thomson scattered light; the last one is used for alignment and the spectral transmission of its filter is centred at the laser wavelength.
- • Therefore, this channel can be used to detect elastic light scattering, which might be due to the presence of dust particles

Figure 1: Intensity of the signal in counts from channels at the laser wavelength together with the plasma current signal, showing no dust is present before the disruption.

- • Only 7% of the examined discharges have not any dust following a disruption, even though for a large majority of the discharges (70%), the dust is detected in less than 10% of the about 30-60 laser pulses following a distruption (Fig. 2).
- • The dust content following ^a disruption is decreasing with time (see the number of dust particles in the first 0.5 s and and between 0.5 s and 1.0 s after a disruption).

Figure 2: Percentage of discharges versus percentage of laser pulses detecting a dust particle

Rh-coated Mo mirrors

- • In the framework of TW5-TPDS-DIADEV EFDA Task, Rhodium mirrors with Molybdenum substrate have been produced by using electrodeposition.
- \bullet Thick coating of Rh $(>1\mu)$ was obtained
- \bullet Surface as well optical characterization has been done.
- \bullet The mirror(s) will be exposed in the TEXTOR scrape-off layer for monitoring the changes of optical properties under plasma flux.

011294

Thank you for your attention

Broader temperature profile at the start-up

ENEN

FP

Improved Ohmic Density Limit

Electron thermal diffusivity

EAE

IFP

thi nm

- Isotopic Abundances
	- 6Li 7.59%
	- 7 Li 92.41%
- Melting point 180.54 \degree C
- Boiling point 1342 °C
- Nuclear Reactions
	- 6 Li + n \longrightarrow T + α + 4.8 MeV

 $7Li + n \rightarrow T + \alpha + n' - 2.87$ MeV

LLL inserted - modification of SOL parameters
 $\frac{#28510 \text{ Å} \#28508 \text{ SOL density} - 1_{\text{p}} = 0.5 \text{ MA}; \text{B}_{\text{T}} = 6 \text{ T}}{20}$

EI.

Despite the large change in n_e (\sim 2 \times in \#28510) $n_{\text{e.SOL}}$ is little affected due to much reduced recycling and in turn of the transport. Also $T_e(r)$ are very similar

⎯

n_{e,SOL}∝($\overline{\text{n}}$

High confinement termination

LITHIUM DETECTION

LITHIUM REACTS WITH WATER GIVING A BASIC SOLUTION:

$2Li(s, l, g) + 2H2O(l, g) \rightarrow 2LiOH(aq, g) + H2(g)$

USING A A WHITE CLOTH IMBUED WITH A SOLUTION OF PHENOLPHTHALEIN (ACID-BASE INDICATOR) WE CAN DETECT LITHIUM DROPS BECAUSE THE SOLUTION TURNS FROM COLORLESS(ACID-NEUTRAL SOLUTION) TO RED (BASIC SOLUTION) IN PRESENCE OF LITHIUM.

The TECXY code (shortly)

TECXY: 2D multifluid code, extension of EPIT

- *Background plasma*: Braginskij-like equations
- -*Impurity ions*: rate equations - all *Z* states (T_{Z,all}=T_i≠T_e)
- -*Neutrals (cold and CX)*: analytical description of

recycling and sputtering and self-sputteringat the limiter surface

- *Drift motions and currents* considered self-consistently
- -*Real curvilinear geometry* of the boundary layer
- *Global ambipolarity* of the radial electric current in the transition layer inside LCMS ensured
- *Parallel transport*: classical, coefficients from 21-momen Grad approx.
- *Radial transport*: anomalous, assigned coeff. (~D_{bohm})

Latest modifications: possibility to treat simultaneously few different impurity species (e.g. Mo+Li) (but without drifts)

TECXY modeling

Metallic walls - very good agreement

 D_1 =0.5 m²/s, R(recycling coeff) =0.75, typical for FTU; input particle flux, $\Gamma_{\text{inp}}=1.1\cdot10^{21} \text{ s}^{-1}$, consistent with FTU-SELF code (0D core model+two-points edge model). T_e maintained quite low by the high cooling rate of the sputtered Mo ions

Lithized walls - agreement: $n_e(r)$ very good, $T_e(r)$ good at LCMS

Essential: i) highly reducing recycling $(R=0.02)$, due to the strong pumping of the Li film; ii) retaining a small Mo content (not fully coated TZM limiter) otherwise T_e too high. D_⊥=0.5 m²/s (unchnaged); Γ_{inn} =5·10²¹ s⁻¹. $\chi_{e\perp}$ little affects T_e profiles mainly determined by $\chi_{e\parallel}$ and R.

Diffusion coefficient and pinch velocity (#28510)

 $\partial N_r/\partial t = -\Gamma_r \implies$ $\partial N_r/\partial t = (D_+ \cdot \partial n(r)/\partial r - n(r) \cdot U) \cdot \Sigma_r$

Only in the outer region, where the n e(r) slope suddenly changes (fig. 6) the two quantities both vary towards reducing outward transport

Strong D₂ pumping capability

E /E

IFP

Peculiar discharge

Ip=0.5MA, BT=6T 28510 limiter Li at + 1.0cm

Electron density profile is peaked and H emission is strongly reduced at the edge

ENE)

Plasma density behavior without density feedback

EVE

IFP

Main parameters for Li limiter

IFP

• **Total area of Li surface ~100 cm2** • **Effective plasma interaction ~ 50-60 cm²** • **Li volume in limiter ~170 cm3** • **Li weight ~80 g** • **Capillary pressure [~] 105 Pa** •**Relative mass change on one shot ~10-4**

• The Mie Scattering theory is used for analyzing the particle size; the perpendicular scattering cross section for a small particle is:

$$
\sigma = \left(\frac{2\pi}{\lambda}\right)^4 a^6 \frac{n^2 - 1}{n^2 + 2} \cong \left(\frac{2\pi}{\lambda}\right)^4 a^6
$$

Figure 3: Experimental cumulative distribution function of the particle cross sections and radii using the Rayleigh approximation in the central spectrometer.