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OUTLINE

1. Liquid Lithium Limiter Experiment
2. Disruption mitigation by ECRH 
3. Dust measurement
4. Manufacturing and characterisation of 

Rhodium coated molybdenum mirrors
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1. Liquid Lithium Limiter Experiment
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PHYSICAL ISSUES

• Wall Conditioning 
Lithization of vacuum vessel shot by shot

• Effects on plasma discharges
Zeff, Recycling,, Density limit, Prad,etc
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TECHNOLOGICAL ISSUES
• To study J×B effects on liquid Lithium

On DIII-D, J × B forces on liquid lithium caused MHD 
instabilities on plasma due to a strong influx of Li.
We have tested the Russian concept to solve this problem

Capillary Porous System (CPS)

• To study heat loads, damage of Liquid Lithium Limiter 
(LLL) in a medium size high field tokamak FTU
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Liquid Lithium Limiter

Langmuir probes

Thermocouples

Heater electrical
cables
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The LLL system is composed by three similar units

Scheme of fully-equipped lithium limiter unit

Liquid lithium surface

Heater

Li source

S.S. box with a 
cylindrical support

Mo heater accumulator

Ceramic break 

Thermocouples

100 mm 34 mm

CPS  is   made  as a 
matt from  wire   
meshes with   porous 
radius 15 μm and       
wire diameter 30 μm 
Structural material 
of wires is S.S.

Capillary Porous System (CPS)

Meshes filled 
with Li
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Liquid Lithium Limiter

Melting point  180.6 °C
Boiling point 1342 °C

Total lithium area ~ 170 cm2

Plasma interacting area  ~ 50- 85 cm2

Total amount of lithium   ≅ 80 g 
LLL initial temperature     > 200oC
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1. Liquid Lithium Limiter Experiment

Discharges without LLL
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Lithization Procedure

• Before the insertion on FTU, the lithium limiter is heated 
up to the liquid phase  (210 °C)

• Lithization is performed by doing three equal shots with 
LLL 2-2.55 cm away from the LCMS and by monitoring 
the temporal evolution of Li III line intensity in the VUV 
spectrum

• About 0.5-1.0×1021 Li atoms are produced by physical 
sputtering plus evaporation (~ 10 monolayers)

• After these shots, the LLL is extracted and the lithization 
is studied in the following  plasma discharges
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Li III 13.5 nm

Time evolution for
three consecutive 

shots

LLL is 2 cm 
away from

LCMS

Time (s)

1

2

3a.u.

Lithization Procedure
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Comparison between Lithization and Boronization
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Zeff was well below 2 during all the experimental campaign
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Shots
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0.15x1020 m-3<ne<2.7x1020 m-3

0.5MA<Ip<0.7MA  Bt=6 T

Zeff is always well below 2 with lithizated wall
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In the VUV 
spectrum the 

prominent line is
Li III

O, Mo and are 
strongly reduced
respectively by a 
factor 3.5 and 1.8 

Li lines

Wavelenght (x10 nm)

Counts

x103

Mo lines

Impurities

O lines
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Wavelenght (x10 nm)

Counts

x103

Impurities
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Strong D2 pumping capability

After Lithization 
much more gas has to 
be injected to get the 
same electron density 
with respect to  
boronized and fully 
metallic discharges
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Strong D2 Pumping Capability
Total amount of injected D2 gas for similar tokamak discharge
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Other effects
Recovery from disruptions

Plasma Restart
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Greenwald limit
<ne>/nG=1.4

<ne>/nG=1.0

The operations 
near or beyond
the Greenwald
limit are easily
performed
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SOL physics with lithized walls - ne(r) and Te(r): 
experiment and code (TECXY)

Set of three reciprocating probes at θ~0°, -70° and +70°,  each with an array of  L-
electrodes (overall sampled angle ~70°) + two fixed L-electrodes on the LLL

SOL density SOL
temperature

SAME Qinp,SOL YET QUITE HIGH ∆Te
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By transport analysis 
performed with JETTO 
code [3] the energy 
confinement time in
lithizated and boronized
discharges results higher 
by a factor of 1.31.3 with 
respect to metallic
discharge.

Energy confinement time
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a) Enhancement of energy 
confinement time over ITER97 L 
scaling (H97) up to 1.2 ÷ 1.25 for 
lithizated and boronized
discharges.

b) For the metallic discharge H97 is 
enhanced at a value of about 1.1, 
that is higher than the average 
value of the standard FTU ohmic 
discharges (H97 = 0.92) [4]

Energy confinement time and ITER97 L scaling
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1.Liquid Lithium Limiter Experiment

Discharges with LLL
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LLL inserted - modification of SOL parameters 
#28568 - Ip=0.5MA,ne=1.1020m-3, Bt=6T

CCD camera view: the bottom 
brigth annular ring develops 
just in between LLL and TZM

wall

core
TZM i-
side

TZM e-side

LLL

Prad

3D sketch (TECXY) of Prad
Most (60%) Li radiation (not in coronal 
equilibrium) in between TZM and LLL 
Strong interaction plasma - LLL => also 
density peaks in front of LLL => shorter λn
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LLL inserted - modification of main parameters

#28510: LLL inserted ~1.4 cm in the SOL: 
MARFE desappears at 0.31 s - high particle 
confinament/high peaked density phase starts  
#28508: LLL outside. 

DENSITY BARRIER ??
Time of profiles at the vertical 
grey lines of the aside plot
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Peaked density profiles

Shot 28510

Shot 30362  15/05/07
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Thermal analysis
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No Surface Damage of CPS Structure
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Problems
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Discharge with additional Power
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LLL less than 1 cm from LCMS
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Next Step :  A new panel type liquid lithium limiter

Preliminary design
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CONCLUSIONS

•Lithization is a very good and 
effective tool for plasma operations

•Exposition of a liquid surface on 
tokamak has been done on FTU with 
very promising results
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ECRH Disruption Mitigation on FTU 
G. Granucci, B. Esposito et al., paper in progress

• Disruption avoidance in FTU has been 
obtained by applying ECRH in both Mo 
injection induced and density limit 
disruptions. 

• To avoid disruptions ECRH has to be 
injected in correspondence of the location of 
q surfaces q=1-3/2-2 as inferred by MHD 
analysis
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ECRH Disruption Mitigation on FTU

Tomograms: (a) #27791 t=0.8308-0.8314;
(b) #27793 t=0.8293-0.8296 s.
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• ECRH Deposition scan by poloidal steering

• Power from 2 gyrotrons  ≈0.75 MW
sufficient to stabilize disruptive modes

• Disruption avoidance occurs at 2 locations: 
rdep=4 cm →q=3/2
rdep=10 cm →q=2

• Detailed analysis on-going

ECRH Disruption Mitigation on FTU

⁄⁄
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Dust measurement by Thomson Scattering in FTU

• The FTU Thomson scattering diagnostic has been used to measure the 
density and size of dust particles following plasma disruptions [1]. 

• A dust density of the order of 107 m−3 has been found. 

• The Rayleigh approximation was used to determine the particle size, 
which is of the order of 0.1 μm and less.

[1] Evidence of dust in FTU from Thomson Scattering diagnostic measurements 
E. Giovannozzi, C. Castaldo, G. Maddaluno, Proc. 33rd EPS Conf. (Roma 2006)
vol. 30I(ECA) (2006) P-2.093
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Dust measurement by Thomson Scattering in FTU

• The detection system consists of 
19 polychromators, each of them
being provided with 5 spectral
channels.

• Four channels are used during
the discharges to measure
Thomson scattered light; the last
one is used for alignment and the 
spectral transmission of its filter
is centred at the laser wavelength. 

• Therefore, this channel can be
used to detect elastic light 
scattering, which might be due to
the presence of dust particles
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Dust measurement by Thomson Scattering in FTU

• Only 7% of the examined
discharges have not any dust
following a disruption, even
though for a large majority of 
the discharges (70%), the dust
is detected in less than 10% of 
the about 30-60 laser pulses
following a distruption (Fig. 2).

• The dust content following a 
disruption is decreasing with
time (see the number of dust
particles in the first 0.5 s and 
and between 0.5 s and 1.0 s 
after a disruption).
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Rh-coated Mo mirrors

• In the framework of TW5-TPDS-
DIADEV EFDA Task, Rhodium 
mirrors with Molybdenum 
substrate have been produced by 
using electrodeposition.

• Thick coating of Rh (> 1μ) was 
obtained

• Surface as well optical 
characterization has been done.

• The mirror(s) will be exposed in 
the TEXTOR scrape-off layer for 
monitoring the changes of optical 
properties under plasma flux.

2 cm
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Thank you for your attention
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Broader temperature profile at the start-up

Boronised wall

Lithizated wall
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Improved Ohmic Density Limit

Next 
Campaign2.7x1020 2.7x1020

With Li 
coating

3.2x10202.4x1020 2.0x1020 
Metallic Wall 

TZM+SS

3.2x10202.0x10202.0x1020
With B 
Coating

1.1MA, 7.2T

4.1x1020 m-3

0.7MA,6T

2.6x1020m-3

0.5MA, 6T

1.9x1020 m-3

Ip, Bt

Greenwald
limit
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Lithium
• Isotopic Abundances

6Li 7.59%
7Li 92.41%

• Melting point
180.54 °C

• Boiling point
1342 °C

• Nuclear Reactions
6Li + n             T + α + 4.8 MeV
7Li + n             T + α + n’ - 2.87 MeV
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LLL inserted - modification of SOL parameters

Despite the large change in ⎯ne (~2× in 
#28510) ne,SOL is little affected due to much 
reduced recycling and in turn of the 
transport. Also Te(r) are very similar

ne,SOL∝(⎯ne/fpk)1.36~1.7 High confinement termination
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LITHIUM DETECTION
LITHIUM REACTS WITH WATER GIVING A BASIC 

SOLUTION:

2Li(s,l,g) + 2H2O(l,g) → 2LiOH(aq,g)+ H2 (g) 

USING A A WHITE CLOTH IMBUED WITH A 
SOLUTION OF PHENOLPHTHALEIN (ACID-BASE 
INDICATOR ) WE CAN DETECT LITHIUM DROPS 
BECAUSE THE SOLUTION TURNS FROM 
COLORLESS(ACID-NEUTRAL SOLUTION) TO RED 
(BASIC SOLUTION) IN PRESENCE OF LITHIUM.
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The TECXY code (shortly)
TECXY: 2D multifluid code, extension of EPIT

- Background plasma: Braginskij-like equations
- Impurity ions: rate equations - all Z states (TZ,all=Ti≠Te)
- Neutrals (cold and CX): analytical description of 
recycling and sputtering and self-sputteringat the limiter surface
- Drift motions and currents considered self-consistently
- Real curvilinear geometry of the boundary layer
- Global ambipolarity of the radial electric current in the 
transition layer inside LCMS ensured
- Parallel transport: classical, coefficients from 21-moment 
Grad approx.
- Radial transport: anomalous, assigned coeff. (~Dbohm)
Latest modifications: possibility to treat simultaneously few 
different impurity species (e.g. Mo+Li) (but without drifts)
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TECXY modeling
Metallic walls - very good agreement
D⊥=0.5 m2/s, R(recycling coeff) =0.75 , typical for FTU; input particle 
flux, Γinp=1.1·1021 s-1, consistent with FTU-SELF code (0D core 
model+two-points edge model). Te maintained quite low by the high 
cooling rate of the sputtered Mo ions

Lithized walls - agreement: ne(r) very good, Te(r) good at LCMS 
Essential: i) highly reducing recycling (R=0.02), due to the strong 
pumping of the Li film; ii) retaining a small Mo content (not fully 
coated TZM limiter) otherwise Te too high. D⊥=0.5 m2/s (unchnaged); 
Γinp=5·1021 s-1. χe⊥ little affects Te profiles mainly determined by χe||
and R.
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LLL inserted - modification of the edge 
particle transport
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Only in the outer region, where the 
ne(r) slope suddenly changes (fig. 6) 
the two quantities both vary towards 
reducing outward transport

∂Nr/∂t = -Γr ==>  
∂Nr/∂t = (D⊥·∂n(r)/∂r - n(r)·U)·Σr
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#28573 - 28574

Strong D2 pumping capability
6.
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Very good density control   
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Stable operations at very 
low density (0.15×1020m-3), 
never reached before on 
FTU, were performed
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Ip=0.5MA, BT=6T
28510 
limiter Li at + 1.0cm

Electron density 
profile is peaked
and  H emission is
strongly reduced at 
the edge

ne

Te

Hα

Tlim

Li

Neut

Peculiar discharge



55
Associazione EURATOM ENEA sulla Fusione

Plasma density behavior without density feedback
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Main parameters for Li limiter

• Total area of Li surface ~100 cm2

• Effective plasma interaction ~ 50-60 cm2

• Li  volume in limiter ~170 cm3

• Li  weight ~80 g
• Capillary pressure ~ 105 Pa
• Relative mass change on one shot ~10-4
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Dust measurement by Thomson Scattering in FTU

• The Mie Scattering theory is used for 
analyzing the particle size; the perpendicular 
scattering cross section for a small particle is:


