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Multiscale Phenomena in PWI

Scale

10m 1m 10cm 1cm 1μm 1nm

Impurity transport
Re-deposition

Dust

Radiation damage
Sputtering

Co-deposits
Fine structure

Local heat load
Local recyclingParticle balance

Neutral transport

It is important to understand various phenomena related to the plasma-
wall interaction from macroscopic and microscopic viewpoints
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TRIAM-1M Tokamak
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Bird’s-eye view of TRIAM-1M

8 T (Steady State)Toroidal field

0.12 mMinor radius

0.84 mMajor radius

TF coils : Nb3Sn (superconductor)
PF coils : Cu  (normal conductor)

Plasma facing components: High Z

Wall Conditioning:
(1)Baking of extension ports 
and then 
(2) ECR discharge cleaning for PFCs
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All of the PFMs are made of metals
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Measurement system for Hα profile
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measured at 6 positions.
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Data at the latter phase of the 
discharge is used to reduce an 
effect of gas puff on the toroidal
profile.
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Toroidal profile of Hα intensity
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Hydrogen recycling is localized 
within λ ~ 0.2m.

Almost all hydrogen is refueled by wall 
recycling. This means that recycling ratio 
is nearly unity. In another exp., the 
recycling ratio was more than 0.998.

[Ref.: M.Sakamoto et al. NF(2002)]
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Density dependence of λ
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DEGAS simulation
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Impact of SOL on the neutral transport
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In the actual geometry, the limiter  is D-
shaped. Large SOL region exists above and 
below the plasma. Neutral transport is SOL 
seems to dominate the characteristic length 
of wall recycling structure.
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Particle Balance in Vacuum Vessel

dNp / dt +   dN0 / dt =   Γfuel – Γpump – Γwall

Γfuel : fueling rate,   Γpump : pumping rate,  Γwall : net wall pumping rate

Plasma

wall

Γfuel

Γwall

ΓpumpNp

N0

wall

Reflection

Γab

Γre

Plasma
Γwall = Γab  - Γre

Positive   : Sink
Negative : Source

Γab: H absorption

Γre: H re-emission

Two roles of wallΓwall = Γfuel – Γpump

Steady state condition:
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Impact of Wall Temperature on GPB
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By using a movable limiter with 
good cooling capability, increase 
in the wall temperature was 
suppressed to less than 60 oC. 
No wall saturation can be seen.
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High Temperature Wall
Without the movable limiter, the 
wall temperature partly increased 
up to 120 oC due to heat load from 
the plasma. The wall pumping rate 
changed from positive to negative 
at t ~ 30 min. 
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In situ measurement of growth of deposited layer
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Continuous wall pumping related to codeposition

Time evolution of the thickness of 
the deposited layer.

smMo 216 /105.1 ×

Growth of dep. layer

Time evolution of the wall 
inventory in 5 h 16 min discharge. 
No wall saturation can be seen.

smH 216 /106.8 ×

Wall Inventory
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Continuous codeposition can be expected.
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Hydrogen retention & microstructure of coHydrogen retention & microstructure of co--depositdeposit

Top view

Material Probe
Limiter

17mm

5

Material Probe

P-Side E-Side

Analysis: RBS, ERD, TEM
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Codeposition of hydrogen with sputtered 
Mo makes a substantial wall pumping.



Summary of material probe results and GPBSummary of material probe results and GPB
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Impact of grain size on hydrogen retention

Thermal desorption spectra
Fluence : 1x1021 D/m2

Total retention
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Note that the deposits with fine grains 
were made in a little oxygen atmosphere.
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Impact of a repetition of discharges on wall condition is shown 
focusing on oxygen impurity behavior
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Oxygen concentration of 
the wall surface gradually 
decreases during the 
discharge.

Note that the data were obtained 
in the initial phase of the campaign.

Single long duration discharge

τ =48 s
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Oxygen behavior in the case of a repetition of discharges
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The time constant τ is about 3 times 
longer than that of a single one.

τ =141 s
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Oxygen concentration on the wall surface increases 
during the interval time between discharges
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Oxygen comes from the surface which does not face 
the plasma during the interval time

Plasma

Superconducting
TF Coil

PF Coils

Valve
Unit

LHe Reservoir 
Tank

Pumping duct

CS
Coil

Plasma

Superconducting
TF Coil

PF Coils

Valve
Unit

LHe Reservoir 
Tank

Pumping duct

CS
Coil

Plasma

Superconducting
TF Coil
Superconducting
TF Coil

PF CoilsPF Coils

Valve
Unit
Valve
Unit

LHe Reservoir 
Tank
LHe Reservoir 
Tank
LHe Reservoir 
Tank

Pumping ductPumping ductPumping duct

CS
Coil
CS
Coil

Bird’s-eye view of TRIAM-1M

Wall Conditioning:
(1)Baking of extension ports 
and then 
(2) ECR discharge cleaning for PFCs
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H2O should come from the 
extension ports during the 
interval time.



Summary

(1) Wall recycling is localized within λ~0.3m. λ is proportional to ne
-0.2. 

Neutral transport in SOL should dominate the characteristic length λ.
(2) Global wall pumping rates were estimated using a particle balance 

model in the case of LTW and HTW.
(3) Wall temperature is a key to dominating a wall role: particle sink or 

particle source.
(4) Codeposition of hydrogen with eroded metal makes a substantial wall 

pumping. H/Mo is comparable to that of carbon.
(5) Capability of hydrogen retention depends on a grain size of the deposits. 

Oxygen strongly affects the structure formation of the deposits.
(6) The wall condition continues to change not only during the discharge but 

also during an interval time between discharges. As for some PWI
issues, a summation of  short discharges can not reproduce a single 
long discharge.
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PWI phenomena have been studied from macroscopic and microscopic
viewpoints in long duration discharges on TRIAM-1M.


