1st NIFS-CRC International Symposium and 1st Korea-Japan Workshop on "Edge-Plasma and Surface Component Interactions in Steady State Magnetic Fusion Devices" NIFS, 21-22 May 2007

Multiscale Phenomena of Plasma-Wall Interaction in TRIAM-1M

M. Sakamoto, M. Ogawa¹, H. Zushi, K. Takaki¹, M. Tokitani², K. Tokunaga, N. Yoshida, Y. Higashizono³, Y. Nakashima³, M. Miyamoto⁴, K. Sasaki¹, B. Rajendraprasad¹, K. Nakamura, K. Hanada, K.N. Sato, H. Idei, M. Hasegawa, S. Kawasaki, H. Nakashima, T. Fujiwara, A. Higashijima

Advanced Fusion Research Center, Research Institute for Applied Mechanics, Kyushu University

 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
National Institute for Fusion Science
Tsukuba University
Shimane University

Contents

- Introduction
- Wall Recycling Structure
- Global Particle Balance
- Hydrogen Retention in Co-deposits
- Impact of an interval time between discharges
- Summary

Multiscale Phenomena in PWI

It is important to understand various phenomena related to the plasmawall interaction from macroscopic and microscopic viewpoints

TRIAM-1M Tokamak

Bird's-eye view of TRIAM-1M

Major radius	0.84 m	
Minor radius	0.12 m	
Toroidal field	8 T (Steady State)	

TF coils : Nb₃Sn (superconductor)

PF coils : Cu (normal conductor)

Plasma facing components: High Z

Wall Conditioning: (1)Baking of extension ports and then (2) ECP discharge cleaning for PEC

(2) ECR discharge cleaning for PFCs

All of the PFMs are made of metals

M. Sakamoto 5 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Contents

- Introduction
- Wall Recycling Structure
- Global Particle Balance
- Hydrogen Retention in Co-deposits
- Impact of an interval time between discharges
- > Summary

Measurement system for $H\alpha$ profile

M. Sakamoto 7

1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS

21. May 2007

Toroidal profile of $H\alpha$ intensity

Data at the latter phase of the discharge is used to reduce an effect of gas puff on the toroidal profile.

Toroidal profile of $H\alpha$ intensity

M. Sakamoto 9 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Toroidal profile of $H\alpha$ intensity

Almost all hydrogen is refueled by wall recycling. This means that recycling ratio is nearly unity. In another exp., the recycling ratio was more than 0.998. [Ref.: M.Sakamoto et al. NF(2002)]

Hydrogen recycling is localized within $\lambda \sim 0.2m$.

Density dependence of λ

DEGAS simulation

DEGAS simulation of the model A reproduces the exp. results.

M. Sakamoto 12 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Impact of SOL on the neutral transport

M. Sakamoto 13 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Contents

- Introduction
- Wall Recycling Structure
- Global Particle Balance
- Hydrogen Retention in Co-deposits
- Impact of an interval time between discharges
- Summary

Particle Balance in Vacuum Vessel

M. Sakamoto 15 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Impact of Wall Temperature on GPB

By using a movable limiter with good cooling capability, increase in the wall temperature was suppressed to less than 60 °C. No wall saturation can be seen.

Without the movable limiter, the wall temperature partly increased up to 120 °C due to heat load from the plasma. The wall pumping rate changed from positive to negative at t \sim 30 min.

M. Sakamoto 16 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

In situ measurement of growth of deposited layer

21. May 2007

1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS

Continuous wall pumping related to codeposition

Time evolution of the thickness of the deposited layer.

Time evolution of the wall inventory in 5 h 16 min discharge. No wall saturation can be seen.

Continuous codeposition can be expected.

M. Sakamoto 18 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Contents

- Introduction
- Wall Recycling Structure
- **Global Particle Balance**

Hydrogen Retention in Co-deposits

- Impact of an interval time between discharges
- > Summary

Hydrogen retention & microstructure of co-deposit

M. Sakamoto 20 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Hydrogen retention & microstructure of Mo deposit

• Low density $(n_e \sim 10^{18} \text{m}^{-3})$, 4320s

bcc, 10-20 nm fcc, ~1 nm

High density (10¹⁹ m⁻³) H/Mo ~ 0.17 @ E-side (8mm) H/Mo ~ 0.15 @ P-side

Low density (10¹⁸ m⁻³) H/Mo ~ 0.04 @ E-side (8mm) H/Mo ~ 0.10 @ P-side

Codeposition of hydrogen with sputtered Mo makes a substantial wall pumping.

High density ($n_e \sim 10^{19} \text{m}^{-3}$ **), 407 s**

bcc, 10-20 nm bcc, 10-20 nm

M. Sakamoto 21 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Summary of material probe results and GPB

	Low density (~1x10 ¹⁸ m ⁻³)		High density(~1x10 ¹⁹ m ⁻³)		note
	E-side	P-side	E-side	P-side	
Structure	bcc	fcc	bcc	bcc	
Grain size	10-20nm	1-2nm	10-20nm	10-20nm	
Mo depo. Rate	3.6x10 ¹⁷ Mo/m ² s	6.4x10 ¹⁶ Mo/m ² s	(1.7x10 ¹⁸) Mo/m ² s	2.3x10 ¹⁸ Mo/m²s	x=8mm @E-side
Г _{wall} (MP)	1.3x10 ¹⁶ H/m²s	6.4x10 ¹⁵ H/m²s	(2.9x10 ¹⁷) H/m ² s	3.5x10 ¹⁷ H/m²s	
Г _{wall} (GPB)	2x10 ¹⁶ H/m ² s (HTW) 8.6x10 ¹⁶ H/m ² s (LTW)		4.0x10 ¹⁷ H/m ² s		Whole wall surface Is used. (S =5 m²)

→ M. Sakamoto et al., Nuclear Fusion, 42 (2002) 588.

✤ M. Sakamoto et al., Nuclear Fusion, 442 (2004) 693.

M. Miyamoto et al., J. Nucl. Mater. 337-339 (2005) 436-440

✤ M. Tokitani et al., 12th ICFRM, J. Nucl. Mater. (in press)

M. Sakamoto 22 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Summary of material probe results and GPB

	Low density (~1x10 ¹⁸ m ⁻³)		High density(~1x10 ¹⁹ m ⁻³)		note
	E-side	P-side	E-side	P-side	
Structure	bcc	fcc	bcc	bcc	
Grain size	10-20nm	1-2nm	10-20nm	10-20nm	
Mo depo. Rate	3.6x10 ¹⁷ Mo/m ² s	6.4x10 ¹⁶ Mo/m ² s	(1.7x10 ¹⁸) Mo/m ² s	2.3x10 ¹⁸ Mo/m²s	x=8mm @E-side
Г _{wall} (MP)	1.3x10 ¹⁶ H/m²s	6.4x10 ¹⁵ H/m²s	(2.9x10 ¹⁷) H/m ² s	3.5x10 ¹⁷ H/m²s	
Г _{wall} (GPB)	2x10 ¹⁶ H/m ² s (HTW) 8.6x10 ¹⁶ H/m ² s (LTW)		- 4.0x10 ¹⁷ H/m ² s		Whole wall surface Is used. (S =5 m²)

→ M. Sakamoto et al., Nuclear Fusion, 42 (2002) 588.

✤ M. Sakamoto et al., Nuclear Fusion, 442 (2004) 693.

→ M. Miyamoto et al., J. Nucl. Mater. 337-339 (2005) 436-440

✤ M. Tokitani et al., 12th ICFRM, J. Nucl. Mater. (in press)

M. Sakamoto 23 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Impact of grain size on hydrogen retention

D₃⁺ with 6keV is implanted to Mo bulk and Mo deposits.

M. Sakamoto 24 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Contents

- Introduction
- Wall Recycling Structure
- Global Particle Balance
- Hydrogen Retention in Co-deposits
- Impact of an interval time between discharges
- Summary

Impact of a repetition of discharges on wall condition is shown focusing on oxygen impurity behavior

Single long duration discharge

Oxygen concentration of the wall surface gradually decreases during the discharge.

Note that the data were obtained in the initial phase of the campaign.

M. Sakamoto 26 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Oxygen behavior in the case of a repetition of discharges

The time constant τ is about 3 times longer than that of a single one.

M. Sakamoto 27 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Oxygen concentration on the wall surface increases during the interval time between discharges

Langmuir adsorption equation

$$\frac{d\theta}{dt} = \frac{s(1-\theta)}{\sigma_m} \left(\frac{v}{4}\right) n - \frac{\theta}{\tau_a}$$
$$\Delta\theta = (1-\theta_0) \{1 - \exp(-t/\tau)\}$$

K. Akaishi, J. Plasma Fusion Res. 79(2003)518.

M. Sakamoto 28 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007

Oxygen comes from the surface which does not face the plasma during the interval time

Bird's-eye view of TRIAM-1M

Wall Conditioning: (1)Baking of extension ports and then (2) ECR discharge cleaning for PFCs

H₂O should come from the extension ports during the interval time.

Summary

PWI phenomena have been studied from macroscopic and microscopic viewpoints in long duration discharges on TRIAM-1M.

- (1) Wall recycling is localized within $\lambda \sim 0.3$ m. λ is proportional to $n_e^{-0.2}$. Neutral transport in SOL should dominate the characteristic length λ .
- (2) Global wall pumping rates were estimated using a particle balance model in the case of LTW and HTW.
- (3) Wall temperature is a key to dominating a wall role: particle sink or particle source.
- (4) Codeposition of hydrogen with eroded metal makes a substantial wall pumping. H/Mo is comparable to that of carbon.
- (5) Capability of hydrogen retention depends on a grain size of the deposits. Oxygen strongly affects the structure formation of the deposits.
- (6) The wall condition continues to change not only during the discharge but also during an interval time between discharges. As for some PWI issues, a summation of short discharges can not reproduce a single long discharge.

M. Sakamoto 30 1st NIFS-CRC Int. Symposium & 1st Korea-Japan WS, NIFS 21. May 2007