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Carbon plate
MD and kinetic 

MC simulations for 
sputtering

Modeling impurity content in fusion plasmas
requires coupling 3 regions

Impurities in the edge plasma are important for power balance

Near-surface carbon
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A crucial step for realistic MD simulations is
proper construction of the target material

We have succeeded in developing targets corresponding
to long-term exposure to reactor plasma as follows:

•  start with amorphous graphite formed by pressurized melting and quenching. 

•  include 25% H (deuterium/tritium) in target to account for plasma exposure.

•  anneal C/H target to stabilize structure.

•  bombard with tritium/deuterium to include the effect of steady-state exposure.
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AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order)
potential is an extension of REBO that includes:

• Short-range, bonding interactions from Brenner (<3 Å)

• Long-range, non-bonding interactions (<6 Å)

• Torsional interactions (4-body)

Sputtering MD simulations utilize state-of-the-art
AIREBO & Brenner inter-atomic potentials

Conditions: Tsurf = 500K, Einc = 20eV, Θinc = 30o

After 40 D/T impacts: 6H, 2H2, CH2

Distance along the carbon surface

Sputtered-particle trajectories (solid colors) just above the surface
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Our MD simulation results cover a range of impact
energies and angles; understanding is developing

Range of results depends partly
on different materials/models

Variations with angle and energy
suggest impact of chemical  processes
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LLNL, MD ‘05; 600K

Mech, expt. ‘98; 500K

Salonen, MD ‘01; 300K
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Mech, Haasz et al., J. Nucl. Mat. 255 (1998) 153
Salonen, et al., Phys. Rev. B63 (2001) 195415
A. Krasheninnikov et al., Comp. Mat. Sci. 25 (2002) 427
LLNL, PFC and LDRD ‘05

A. Krasheninnikov, MD ‘02
  tight binding; 300K
  empirical pot.; 300K



            Electron impact ionization
e– + H2 ⇒ H2+ + 2e–          e- + C  ⇒ C+ + 2e-

e– + H   ⇒ H+ + 2e–

e– + H2 ⇒ 2H + e–

Initial reaction-diffusion
model being used to rank
importance of species

Ion-neutral
reactions
H2 + H+ ⇒ H + H2+

H + H2+ ⇒ H2 + H+

Sputtered hydrocarbons
predicted by MD are now being
added to find net C yield
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50 eV at 0°
1.55%  31 C ejected

100 eV at 0°
1.30%  26 C ejected

Next step:
Include sputtered
hydrocarbon.



XOOPIC can use full particle electrons, but we need
more efficient Boltzmann electron model

• PIC ions, Boltzmann-PIC
hybrid electrons
• Electrons above specified
threshold treated as
particles – retains kinetic
effects, Monte Carlo
collision model
• Electron bulk modeled as
inertialess Maxwell-
Boltzmann distribution:

Based on Cartwright et al., Phys. Plasmas 7, 3252 (2000).

Current-driven 1D DC discharge runs up to
100 times faster than full PIC electron model.

( )( )Tqnn /exp)( 0 xx !"=
• Can choose arbitrary
Boltzmann electron
distribution function, f(E),
e.g. with cutoff tails.
• Boltzmann species
collisions based on f(E)



Full edge profile of carbon ions (charges Z= 1-6)
from fluid UEDGE provides impurities
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Haasz, expt., (old
sputtering model)

MD results        new 
sputtering model 

Hydrogen plasma sensitive to C-yield



Reduced carbon sputtering induces change from
“detached” inner divertor to “attached”

Divertor Te history Midplane C+6 history

Change from 100% to
50% of Haaz ‘97
sputtering model



Summary

• Developed realistic chemically-evolved (surface roughness) C/H targets
using annealing and deposition

• State-of-the-art carbon interaction models were applied to producing new
multi-variable chemical/physical sputtering

• Implemented and began testing chemical-rate methodology (ChemKin) to
identify dominant hydrocarbon species

• Initial demonstration of edge plasma sensitivity to carbon content

• Implemented fast Boltzmann electron model for developed near-surface
dynamics via XOOPIC plasma/neutral code


