Modeling carbon sputtering and near-surface plasma chemistry^{*}

L.A. Zepeda-Ruiz, J. Marian, G.H. Gilmer, C.J. Mundy, E. Bringa, T.D. Rognlien Lawrence Livermore National Laboratory J. P. Verboncoeur, University of California, Berkeley

> Plasma Facing Components Workshop Princeton Plasma Physics Lab May 9, 2005

* Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48 and partial supported by LDRD project 04-SI-003.

Modeling impurity content in fusion plasmas requires coupling 3 regions

A crucial step for realistic MD simulations is proper construction of the target material

We have succeeded in developing targets corresponding to long-term exposure to reactor plasma as follows:

- start with amorphous graphite formed by pressurized melting and quenching.
- include 25% H (deuterium/tritium) in target to account for plasma exposure.
- anneal C/H target to stabilize structure.
- bombard with tritium/deuterium to include the effect of steady-state exposure.

Resulting carbon MD target showing H (blue)

Normalized spatial distribution of lattice ions

Sputtering MD simulations utilize state-of-the-art AIREBO & Brenner inter-atomic potentials

AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) potential is an extension of REBO that includes:

- Short-range, bonding interactions from Brenner (<3 Å)
- Long-range, non-bonding interactions (<6 Å)
- Torsional interactions (4-body) ——

Sputtered-particle trajectories (solid colors) just above the surface

Distance along the carbon surface —

Conditions:
$$T_{surf}$$
 = 500K, E_{inc} = 20eV, Θ_{inc} = 30°
After 40 D/T impacts: 6H, 2H₂, CH₂

Our MD simulation results cover a range of impact energies and angles; understanding is developing

Mech, Haasz et al., J. Nucl. Mat. **255** (1998) 153 Salonen, et al., Phys. Rev. **B63** (2001) 195415 A. Krasheninnikov et al., Comp. Mat. Sci. **25** (2002) 427 LLNL, PFC and LDRD '05

Initial reaction-diffusion model being used to rank importance of species

Sputtered hydrocarbons predicted by MD are now being added to find net C yield

20

carbon complex

XOOPIC can use full particle electrons, but we need more efficient Boltzmann electron model

- PIC ions, Boltzmann-PIC hybrid electrons
- Electrons above specified threshold treated as particles – retains kinetic effects, Monte Carlo collision model
- Electron bulk modeled as inertialess Maxwell-Boltzmann distribution:
 - $n(\mathbf{x}) = n_0 \exp(-q\phi(\mathbf{x})/T)$

 Can choose arbitrary Boltzmann electron distribution function, f(E), e.g. with cutoff tails.

 Boltzmann species collisions based on f(E)

Current-driven 1D DC discharge runs up to 100 times faster than full PIC electron model.

Based on Cartwright et al., Phys. Plasmas 7, 3252 (2000).

Full edge profile of carbon ions (charges Z= 1-6) from fluid UEDGE provides impurities

Reduced carbon sputtering induces change from "detached" inner divertor to "attached"

Summary

- Developed realistic chemically-evolved (surface roughness) C/H targets using annealing and deposition
- State-of-the-art carbon interaction models were applied to producing new multi-variable chemical/physical sputtering
- Implemented and began testing chemical-rate methodology (ChemKin) to identify dominant hydrocarbon species
- Initial demonstration of edge plasma sensitivity to carbon content
- Implemented fast Boltzmann electron model for developed near-surface dynamics via XOOPIC plasma/neutral code