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ITER utilizes a single-null divertor with
steeply-inclined divertor plates
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ITER utilizes a single-null divertor with '@
steeply-inclined divertor plates I=J
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Previous ITER divertor-plasma modeling assumed

diffusive radial transport only; we add convection |~

ITER assumes 100 MW power input to SOL
Here carbon modeled as a 3% concentration

Anomalous radial diffusion set at D = 0.3 m?%/s, x,; =1 m?%/s

We add a radial convection term on outboard side, as
experiments and simulations imply

radial particle-flux I, = -Ddn/dr +V___ n
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Why? - there is experimental and theoretical '@
evidence for strong outward convection in SOL =

100 _From B. :Lips:chul$z, D.: Whyte/__
Gas-puff imaging shows outward : G o
moving filaments (“blobs”) 3
(Zweben et al.) %
k3 _
 Probes see outward moving L
perturbations (Boedo, Rudakov) 100 1'01,‘,1 108 112
e v S T
* lonization balance from H-alpha g-ig 0.23
(Lipschultz, Whyte) . 0.58 ° 0.36
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 Theory and edge turbulence
simulations show outward
convection (Krasheninnikov,
Pigarov et al.; Rognlien, Xu et al.)
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But we don’t know the scaling of V__,,, with size, _@
edge temperature, strong H-mode flow shear ... L=

« Consequently, we can parameterize the effect by considering a

range of V., cases, from a maximum of 100 m/s to 0 m/s.

« Divertor conditions near separatrix are relatively insensitive

« Midplane radial particle and energy fluxes are sensitive
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With no convection, we obtain conditions typical
of past ITER divertor-plasma modeling

Heat flux (MW/m?2)

@

Anomalous radial diffusion set at D = 0.3 m?/s, x,; =1 m?/s
Peak heat-flux on outer divertor = 12 MW/m?

~50% of the power is radiated by carbon
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Carbon radiation is localized near the divertor E
plates; neon would be more diffuse
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Convection applied to ITER shows some radial ™
broadening of profiles at the divertor =

Plasma and Neutral Densities - Outer Div. Electron and Ion Temperatures - Outer Div.
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Outer midplane density profiles near the wall _@
change substantially with convection -

. . \ Separatrix
 Plasma density increases near - \
the wall *

V¢ max = 100 m/s ]

* Neutral density increases at a
faster rate owing to recycling

lon density (1019 m3)

* Higher neutral density inside
the separatrix ==> substantial
charge-exchange loss and
sputtering (Kotschenreuther,
Rognlien, Valanju Fusion Eng.
Design, ‘04)
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Plasma fluxes to the wall increase more than _@
local density owing to ionization of recycled gas | =

 Since n; and Vconv increase, the 15} Outer midplane—. o
nV flux is much larger v cre0ms /v |
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Extending flux surfaces beyond W_=1.035 into '@
the “gap” region shows an upper X-point =

Mapping along flux surfaces gives T T T T :
plate (and wall) intersections ol f ]
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Enhanced plasma fluxes can substantially E
increase ITER Beryllium wall sputtering —

 These hydrogen plasma fluxes supplied to J. Brooks for WBC
simulations of wall sputtering

« The “gap” plasma is an extrapolation from UEDGE; impacts
ionization of Be

« Later: Be sources can be used within UEDGE to determine
competition between transport along and across flux surfaces;
requires understanding Be cross-field transport

- lterate on hydrogen plasma if Be sputtering changes main edge
plasma
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Summary and plans E

 Even moderate radial convection produces substantial plasma
fluxes to the wall for ITER

- Sputtering of material (Be) from plasma and cx-neutrals can be
large

« Gap plasma (for ¥_> 1.035) needs a better model; UEDGE can
perform unbalanced double-null simulations that will help

« Scaling of convective transport for hydrogen and beryllium needs
improvement
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