Impact of convective transport on ITER edge-plasma properties^{*}

T.D. Rognlien and R.H. Bulmer

Lawrence Livermore National Laboratory

Presented at the ALPS/PFC Meeting PPPL May 9-11, 2005

* Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

ITER utilizes a single-null divertor with steeply-inclined divertor plates

Poloidal cross-section showing edge-plasma region

- Nearly vertical plates reduce heat flux & facilitate plasma detachment
- Carbon radiation helps reduce T_e near strike point to allow He pumping

ITER utilizes a single-null divertor with steeply-inclined divertor plates

Nearly vertical plates reduce heat

flux & facilitate plasma

Poloidal cross-section showing edge-plasma region

Rognlien PFC May, '05

ITER utilizes a single-null divertor with steeply-inclined divertor plates

Poloidal cross-section showing Nearly vertical plates reduce heat edge-plasma region flux & facilitate plasma detachment 10 Wall Carbon radiation helps reduce T_e • near strike point to allow He 8 pumping Vertical distance (m) Core 6 6.1 psi=1.035 Vertical distance (m) 6.0 Wall Separatrix 5.9 Divertor (psi=1.0) plates 8 4 6 8.2 8.4 8.6 Major radius (m) 8.1 Major radius (m)

Previous ITER divertor-plasma modeling assumed diffusive radial transport only; we add convection

- ITER assumes 100 MW power input to SOL
- Here carbon modeled as a 3% concentration
- Anomalous radial diffusion set at D = 0.3 m²/s, $\chi_{e,i}$ = 1 m²/s
- We add a radial convection term on outboard side, as experiments and simulations imply

Why? - there is experimental and theoretical evidence for strong outward convection in SOL

- Gas-puff imaging shows outward moving filaments ("blobs") (Zweben et al.)
- Probes see outward moving perturbations (Boedo, Rudakov)
- Ionization balance from H-alpha (Lipschultz, Whyte)

 Theory and edge turbulence simulations show outward convection (Krasheninnikov, Pigarov et al.; Rognlien, Xu et al.)

But we don't know the scaling of V_{conv} with size, edge temperature, strong H-mode flow shear ...

- Consequently, we can parameterize the effect by considering a range of V_{conv} cases, from a maximum of 100 m/s to 0 m/s.
- Divertor conditions near separatrix are relatively insensitive
- Midplane radial particle and energy fluxes are sensitive

With no convection, we obtain conditions typical of past ITER divertor-plasma modeling

- Anomalous radial diffusion set at D = 0.3 m²/s, $\chi_{e,i}$ = 1 m²/s
- Peak heat-flux on outer divertor = 12 MW/m²
- ~50% of the power is radiated by carbon

Distance along plate (m)

Carbon radiation is localized near the divertor plates; neon would be more diffuse

Vertical distance (m)

2

1

Rogniien PFC May, '05

Convection applied to ITER shows some radial broadening of profiles at the divertor

Rognlien PFC May, '05

Outer midplane density profiles near the wall change substantially with convection

- Plasma density increases near the wall
- Neutral density increases at a faster rate owing to recycling
- Higher neutral density inside the separatrix ==> substantial charge-exchange loss and sputtering (Kotschenreuther, Rognlien, Valanju Fusion Eng. Design, '04)

Plasma fluxes to the wall increase more than local density owing to ionization of recycled gas

- Since n_i and V_{conv} increase, the nV flux is much larger
- Ionized neutrals contribute the flux
- Ion temperature decreases some owing to cold ionization source; ion energy flux slower
- Hot cx-neutrals, sheath drop to be added to energy flux

Extending flux surfaces beyond Ψ_n = 1.035 into the "gap" region shows an upper X-point

Distance from midplane separatrix (cm)

Rognlien PFC May, '05

- These hydrogen plasma fluxes supplied to J. Brooks for WBC simulations of wall sputtering
- The "gap" plasma is an extrapolation from UEDGE; impacts ionization of Be
- Later: Be sources can be used within UEDGE to determine competition between transport along and across flux surfaces; requires understanding Be cross-field transport
- Iterate on hydrogen plasma if Be sputtering changes main edge plasma

Summary and plans

- Even moderate radial convection produces substantial plasma fluxes to the wall for ITER
- Sputtering of material (Be) from plasma and cx-neutrals can be large
- Gap plasma (for Ψ_n > 1.035) needs a better model; UEDGE can perform unbalanced double-null simulations that will help
- Scaling of convective transport for hydrogen and beryllium needs
 improvement