Hydrogen sensor diagnostic

Bob Bastasz, Dmitry Rudakov, Adam McLean, Josh Whaley, Clement Wong Sandia National Laboratories and General Atomics

outline

- H sensors
- **DiMES diagnostic**
- **DIII-D** test
- data analysis
- status & plans

Metal-Insulator-Semiconductor (MIS) sensors

4 element hydrogen sensor chip $4 \text{ mm} \times 4 \text{ mm}$

MIS sensors detect hydrogen using a catalytically-active metal incorporated into a semiconductor device.

- MIS gas sensors are solid-state devices that detect hydrogen.
- The sensors are small, low-power devices that have good sensitivity and selectivity to H.

diagram of a MIS sensor structure

Solid-state H sensors for PMI diagnostics

H microsensors have several desirable properties:

- small, low power consumption
- detects all H isotopes
- compatibile with T, n, and X-rays
- provides electrical readout.
- H microsensors can be used to:
- monitor the particle flux to PFCs
- study spatial and directional anisotropies
- measure the energy of impinging particles.

H sensor PMI diagnostic for DiMES

- fits inside DiMES sample
- detects energetic H (and D)
- apertures exclude ions
- integrates CX flux
- reports after shot ends

DiMES H sensor assembly

DiMES H sensor components

assembly holds one chip with 4 sensors

6 RB:SNL:8772:2005-0510-06

The sensor cartridge fits inside a DiMES sample.

 Most of the diagnostic is made from standard vacuum materials.

Each chip contains 4 MIS hydrogen sensors.

Sensor layout

Device structure

Devices fabricated in the CSRL at Sandia

MIS hydrogen sensors: theory of operation

- Atomic hydrogen
 - 1 filters quickly through metal
 - 2 traps near interface
 - 3 alters barrier height
 - 4 affects electron flow across junction.

• Example: a reverse-biased tunnel diode

$$\phi_b \doteq \phi_m - \chi$$

$$I_r = A e^{-\phi_b/kT}$$

$$I_r = A e^{-\phi_b/kT}$$

small barrier height change ⇒ large device response

Example of a Pd-MIS capacitor response to H

- CV curve shifts upon exposure to H.
- Monitoring the bias voltage change at the inflection point gives a measure of H dose.
- The response is fast with thin Pd films (ms).

Tests in DIII-D

- The diagnostic was connected to DiMES for checkout in February, 2005.
- It was put into position in DIII-D on March 21 and monitored three days of plasma shots.
- CV curves were recorded every second from 18 sec before each shot to about 80 sec afterwards.
- The diagnostic was in place for 118 shots on 3/21,22,25, 92 of which provided data.
- 3 of the 4 sensors responded to the plasmas; the signal response changed from shot-to-shot.
- The data are currently being reduced and analyzed.

Example of raw data: a CV curve before a shot

Example of data: 25 point average

Example of data: before and after shot CV curves

Example of data: evaluation of flat band voltage

Example of data: evaluation of sensor response

H sensor shot-by-shot response

H SENSOR RESPONSE SHOT-BY-SHOT

Cumulative response over 3 days of operation

Further data analysis

- (1) Correlate data with strike-point position
- (2) Correlate data with edge-plasma parameters
- (3) Compare data with other diagnostics
- (4) Apply H loading factor to response
- (5) Correct for temperature variations
- (6) Calibrate sensors using a known flux H+ beam

Summary

- A compact diagnostic was built and tested using DiMES on DIII—D to monitor the energetic hydrogen CX flux to the divertor.
- The diagnostic successfully recorded 3 days of plasma shots in DIII—D.
- Data are being analyzed and studied.
- More operation in DIII—D is planned, including adding a sensor to the new mid-plane DiMES (MiMES).
- The possibility of installing the diagnostic on NSTX, LHD, or other devices is being considered.
- The potential use of solid-state hydrogen sensors in distributed PMI diagnostics for ITER is being explored.

DiMES H sensor connection diagram

No direct correlation with neutron output.

NEUTRON OUTPUT

