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$' Outline

e Lithium-cooled refractories — P.S. fabrication

LM Heat transfer in closed tubes and one-sided

heating — understanding conductive fluids
« CFD modeling of smooth tubes and finned devices
« HHF testing setup using LIMITS and EBTS

e Conclusions
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: Objectives of modeling and experiment

e Support PPI's phase-Il SBIR project

e Compare smooth tubes to tubes with fin

enhancements (turbulence & extended surface area)
« Effect of film boundary on convective heat transfer
e Evaluate flow parameters: AP, v,, T,,, mixing
e Lithium reactions with plasma sprayed refractory
walls

 Thermal cycling effects on actively cooled
refractories
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SBIR/STTR partners make significant

contributions to PFC research.

Plasma Processes, Inc.
e Constructed of plasma sprayed Molybdenum, Tungsten,

and W-Ni-Fe Alloy
— Refractory metals plasma sprayed over
graphite mandrel
— Graphite is then chemically etched away
 Advantages
— Simplified machining for internal fins

* Disadvantages
— Porous walls |
— Higher impurity content
— Fin aspect ratio limitations

Laboratories
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Lithium coolant has some advantages.

advantages

e LOw pressure

* High temperature

* High conductivity

e Lithium is required for tritium breeding

disadvantages

e Pure lithium i1s molten between 454K and 1620K
e Lithium reacts with air, H20, Cu, etc...
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Only refractory heatsinks can operate at very high
temperatures and are compatible with liquid lithium coolant.

e Mo, W and W-Ni-Fe
plasma sprayed heatsinks
(Plasma Processes, Inc. — phase-II SBIR)

« Smooth tubes and helical
fins (pitch: 1 rev/7.4 cm)

« Applications: FW/blanket

Description of Spray Formed Refractory Metal Heat Sinks

Material Bore Bore Major ID Bore Minor ID | Number of Fins
ID Number Configuration
\VV2000-20 W-Ni-Fe Smooth ~12.7mm N/A N/A
\VV2000-23B W-Ni-Fe Finned 9mm 7mm 8
\V2000-3C Molybdenum Smooth ~12.7mm N/A N/A
V2000-24 Molybdenum Finned 9mm 7mm 8
National

V2002-12D Tungsten Finned 9mm 6.7mm 8 @ Sandia
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* Plan geometry with x,y,z symmetry

e Construct regions (manual CAD-type labor)
 Mesh regions into finite volumes (optimize)
 Add boundary conditions (walls, inlets, etc)

e Specify initial conditions & solution parameters

 Execute STORM solver (seek steady state)
— Conservation of mass, momentum, energy

e Graphically interpret results with FIELDVIEW

Computational Fluid Dynamics
Finite Volume Modeling Process

Sandia
7 National
Laboratories



Analysis uses temperature dependent properties for
heatsink and coolant (user coding)
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Axlal Finned Model

Axial Fihnned Model: dimfin23
Regions: 700
Meshed Volumes: 150,144
Array Size: 22,892 954
Construction Time: 1 Week

Heated Surface

Cross-Sectional View

Length: 23 cm

Fin I1D: 1.07 cm

Fin OD: 1.27 cm

Tube OD: 1.90 cm

Heated Area: 1.70 cm x 5.90 ¢m
10.03 cm*2
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# Conduction affects

fin performance in this geometry.

 Thermal conductivity of lithium and molybdenum
IS not significantly different.

— Molybdenum: 106 [w/(m*K)]
— Lithium: 43

 Boundary layer disruption does not significantly
affect overall heat transfer for lithium cooling.

* Further modeling will be needed to determine if
the conductive effects of thick walls help transfer
heat to the bottom of the lithium column.

Sandia
10 National
Laboratories



Approach to Steady State Conduction
3D View, 5 MW/m2, 0.1 m/s, Axial Finned Laminar

Temperature

3 1203 K

5 MW/ mt2, 0.1 m/s, Axial Finned Laminar
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' Effect of Film not as important for LM as water.
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FIG. 9-3.  Martinelli's solutions for the temperature gradients in pipe flow.



Axial fins of this geometry
decrease heat transfer!

Steady State Velocity Profile, Fully Developed Flow Steady State Velocity Profile, Fully Developed Flow

Velocity (m/s) Temperature (K) Velocity (m/s) Termperature (K
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5 MW/ m12, 0.1 m/s. Axial Finned Laminar 5 MW/ mtZ, 0.1 m/s, Axial Finned Laminar

*With constant inlet velocity, less lithium flows
through finned model due to the volume of the fins.
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Laminar conditions are easy to model.
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Transient is controlled by conduction in the wall.
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Helical Finned Model

Helical Finned Model: heldm300
Regions: 6800
Meshed Volumes: 196,788
Construction Time: 1 Month

Heated Surface

- &—— Cross-Sectional View

68x10x10
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compared to smooth tubes.

Finned refractories have negative impact on heat transfer

Smooth, Axial & Helical Finned Comparison

5MW/m?, 0.1m/s, Laminar
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Code has heatflux problem on elements with coplanar sides.
Only affects surface elements in helical model at j,k boundary.
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Temperature gradient is only in outer 2 mm of lithium at 4 m/s.
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Lithium temperature is highest in low velocity grooves,
with little mixing even at the exit.

exit
temperatures
4 m/s
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Axial velocity in grooves ~1 m/s.

core velocity 4 m/s

m 4.094

.O.DDO
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Highly turbulent flows are difficult to initiate.

Helical Fin Comparison
5 MW/m?, k-¢ turbulence
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ns significantly increase pressure drop.

Fins are not always good!

Pressure Drop (Pa)

Pressure Drop (Pa)

Pressure Drop vs Inlet Velocity

Helical Finned, 5 MW/m?, k-epsilon
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Pumping power
requirements increase with
very little gain in heat
transfer.
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Experimental Setup (Top View):
LIquid Metal Integration Test System (LIMITS)

Lithium Pump

>~

Vacuum Chamber

Electron Gun

Lithium Tank

EM Flowmeter
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Refractories are instrumented with 4
type-K thermocouples.

ref 200 mm

25.0mm !

30.00°

|
I Section A-A
1000 mm

4x, EDM 1.000mm dia. channel, Y long
inthe side of the heat sink. At 30° angle, EDM
1.000mm dia. hole, 5.250mm deep.

Maternials List

Part # Material Bore Y

V2000-23B  tungsten heavy alloy  helical fin  12.250num
V2000-24  molybdenum helical fin  12.250mm
V2002-12C  tungsten helical fin  12.250mm
V2002-12D  tungsten helical fin  12.250num
V2000-3B  molybdenum smooth 12.750mm
V2000-3C  molybdenum smooth 12.750nmm
V2000-20  tungsten heavy alloy  smooth 12.750num

I Section B-B

Tolerances:

X +- 1mm
XX +-0.5mm
XXX +-0.25mm
XXXX +H-0.125mm

Plasma Processes, Inc.
Huntsville, Alabama

TC holes for refractory

Prepared by: Scott O'Dell

metal mockups (Revision A)

Date: 8/14/02

Scale: None Sheet: 1 of 1

Drawing Number: PP1049 (Revision A)
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Coolant Channel Mounted
IN LIMITS Vacuum Chamber

Electron Beam

'(’——thhlum Outlet -

/ / Refrac:tory Surfacé

fBand Heaters

Lithium Inlet
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LIMITS at SNL's
Plasma Materials Test Facility

Test support: J. McDonald, T. Lutz, K. Troncosa, F. Bauer

- T . Vacuum Chamber ——=»
_ ;..u' \‘*\-H‘__ EM Flowmeter ~
L B | b \ = } '.
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Conclusions

* Enhancing convection through the fin-effect is not
beneficial for liguid metals compared to water in this example.
» Better heat transfer at higher velocities is too costly in pressure drop.
» High temperature, low pressure lithium applications
using refractories require thin-walled, smooth tubing
(or thin face plates on the heat flux side).
 Cracking in thin-walled refractories will be a problem.
o LIMITS will provide experimental data to benchmark CFD calculations
* Fins in refractory metals is a good demonstration of plasma spray
fabrication; however, it may be more useful for helium than LM.
* Closer coordination between PFC institutions and
SBIR/STTR companies can identify design issues early
in a project. PFCs require a comprehensive treatment of
materials, fabrication, heat transfer and PMI issues.
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