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Outline

• Lithium-cooled refractories – P.S. fabrication

• LM Heat transfer in closed tubes and one-sided 

heating – understanding conductive fluids

• CFD modeling of smooth tubes and finned devices

• HHF testing setup using LIMITS and EBTS

• Conclusions 
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Objectives of modeling and experiment

• Support PPI’s phase-II SBIR project
• Compare smooth tubes to tubes with fin 

enhancements (turbulence & extended surface area)
• Effect of film boundary on convective heat transfer
• Evaluate flow parameters: ∆P, vin, Tin, mixing
• Lithium reactions with plasma sprayed refractory 

walls
• Thermal cycling effects on actively cooled 

refractories
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SBIR/STTR partners make significant 
contributions to PFC research.

• Constructed of plasma sprayed Molybdenum, Tungsten, 
and W-Ni-Fe Alloy
– Refractory metals plasma sprayed over

graphite mandrel
– Graphite is then chemically etched away

• Advantages
– Simplified machining for internal fins

• Disadvantages
– Porous walls
– Higher impurity content
– Fin aspect ratio limitations

Plasma Processes, Inc.
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Lithium coolant has some advantages.

advantages

• Low pressure
• High temperature
• High conductivity
• Lithium is required for tritium breeding

• Pure lithium is molten between 454K and 1620K
• Lithium reacts with air, H20, Cu, etc…

disadvantages
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Only refractory heatsinks can operate at very high 
temperatures and are compatible with liquid lithium coolant.

• Mo, W and W-Ni-Fe   
plasma sprayed heatsinks
(Plasma Processes, Inc. – phase-II SBIR)

• Smooth tubes and helical
fins (pitch: 1 rev/7.4 cm) 

• Applications:  FW/blanket

Description of Spray Formed Refractory Metal Heat Sinks

smooth

finned

ID Number
Material Bore 

Configuration
Bore Major ID Bore Minor ID Number of  Fins

V2000-20 W-Ni-Fe Smooth ~12.7mm N/A N/A

V2000-23B W-Ni-Fe Finned 9mm 7mm 8

V2000-3C Molybdenum Smooth ~12.7mm N/A N/A

V2000-24 Molybdenum Finned 9mm 7mm 8

V2002-12D Tungsten Finned 9mm 6.7mm 8
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Computational Fluid Dynamics
Finite Volume Modeling Process

• Plan geometry with x,y,z symmetry
• Construct regions (manual CAD-type labor) 
• Mesh regions into finite volumes (optimize)
• Add boundary conditions (walls, inlets, etc)
• Specify initial conditions & solution parameters
• Execute STORM solver (seek steady state)

– Conservation of mass, momentum, energy
• Graphically interpret results with FIELDVIEW
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Analysis uses temperature dependent properties for 
heatsink and coolant (user coding)

dρH/dt + d(ρuiH)/dxi =  d/dxi[k/CpdH/dxi] + dp/dt + uidp/dxi + Φ + Q + 
SH,p
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Axial Finned Model
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Conduction affects 
fin performance in this geometry.

• Thermal conductivity of lithium and molybdenum 
is not significantly different.
– Molybdenum: 106 [w/(m*K)]
– Lithium:43

• Boundary layer disruption does not significantly 
affect overall heat transfer for lithium cooling.

• Further modeling will be needed to determine if 
the conductive effects of thick walls help transfer 
heat to the bottom of the lithium column.
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Approach to Steady State Conduction
3D View, 5 MW/m2, 0.1 m/s, Axial Finned Laminar

Temperature

1203 K

473 K

<--- Lithium Outlet
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Effect of Film not as important for LM as water.

• Our helical fin Re ranges from 
821 to 82150 (0.1 to 10 m/s)

• Pr = .0047 @ 200 C
• Convection contribution is same 

order of magnitude as 
conduction: Bi~Nu<10, Pr<.01

• For water, convection is more 
than 2 orders higher, Bi>10, 
Nu~1000s, Pr~.34 (x100)

Re=DeVρ/µ
Pr=Cpµ/k 

Bi=hLc/ks
Nu=hLc/kf

water

lithium
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Axial fins of this geometry 
decrease heat transfer!

•With constant inlet velocity, less lithium flows 
through finned model due to the volume of the fins.
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Laminar conditions are easy to model.

Heat Flux Comparison
Axial Finned, 0.1m/s, Laminar
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Transient is controlled by conduction in the wall.

Axial Finned Laminar, 5MW/m2, 0.1m/s

400

500

600

700

800

900

1000

1100

1200

0 5 10 15 20

Time (Seconds)

Te
m

pe
ra

tu
re

 (K
el

vi
n)

Center of Heated Surface Center of Lithium Column



1616

Helical Finned Model

68x10x10
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5 MW/m2 heating to s.s. with 0.1 m/s flow.
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Finned refractories have negative impact on heat transfer 
compared to smooth tubes.

Smooth, Axial & Helical Finned Comparison
5MW/m2, 0.1m/s, Laminar
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Code has heatflux problem on elements with coplanar sides.
Only affects surface elements in helical model at j,k boundary.
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Temperature gradient is only in outer 2 mm of lithium at 4 m/s.

wall fin lithium

CL
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Lithium temperature is highest in low velocity grooves,
with little mixing even at the exit.

exit
temperatures
4 m/s
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Axial velocity in grooves ~1 m/s.

core velocity 4 m/s
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Highly turbulent flows are difficult to initiate.

Helical Fin Comparison
5 MW/m2, k-ε  turbulence
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Fins significantly increase pressure drop.

Pressure Drop vs Inlet Velocity
Helical Finned, 5 MW/m2, k-epsilon
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Fins are not always good!

Pumping power 
requirements increase with 
very little gain in heat 
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2525

Experimental Setup (Top View):
LIquid Metal Integration Test System (LIMITS)
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Refractories are instrumented with 4
type-K thermocouples.
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Coolant Channel Mounted
in LIMITS Vacuum Chamber
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LIMITS at SNL's 
Plasma Materials Test Facility

Test support:  J. McDonald, T. Lutz, K. Troncosa, F. Bauer
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Conclusions

• Enhancing convection through the fin-effect is not
beneficial for liquid metals compared to water in this example.

• Better heat transfer at higher velocities is too costly in pressure drop. 
• High temperature, low pressure lithium applications
using refractories require thin-walled, smooth tubing
(or thin face plates on the heat flux side).

• Cracking in thin-walled refractories will be a problem.
• LIMITS will provide experimental data to benchmark CFD calculations
• Fins in refractory metals is a good demonstration of plasma spray
fabrication; however, it may be more useful for helium than LM.

• Closer coordination between PFC institutions and 
SBIR/STTR companies can identify design issues early
in a project.  PFCs require a comprehensive treatment of
materials, fabrication, heat transfer and PMI issues.
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