

Investigation of SOL widths with plasma parameters in NSTX H-mode plasmas

J-W. Ahn¹, R.Maingi², J.A.Boedo¹, V.Soukhanovskii³

Acknowledgement: B. LeBlanc and the NSTX research team

¹University of California – San Diego ²Oak Ridge National Laboratory ³Lawrence Livermore National Laboratory

Poloidal cross-section of NSTX

Time trace of discharge parameters

The conduction-limited regime

awrence Livermore

The two-point model (2PM)

Figure from "The Plasma Boundary of Magnetic Fusion Devices", P.C.Stangeby, IoP Publishing (2000)

§ 0D divertor model § Simply relating upstream parameters ('u', $T_{e,u}$, $n_{e,u}$, etc) to the target ones ('t', $T_{e,t}$, $n_{e,t}$, etc) § No attempt to model parallel variation of T_e , n_e

$$2n_{t}T_{t} = n_{u}T_{u}$$
 Pressure balance
$$T_{u}^{7/2} = T_{t}^{7/2} + \frac{7}{2}\frac{q_{\parallel}L_{c}}{\kappa_{0e}}$$
 Power balance

 $q_{\parallel} = \gamma n_t k T_t c_{st}$ Power across the sheath

NSTX Near SOL in conduction-limited regime

SOL plasma regime judged from the upstream temperature and density, T_{eu} and n_{eu} , and the parallel connection length, L_c

From the 2PM analysis (S.K.Erents, Nucl. Fusion 2000) $T_u\Big|_{cond \Leftrightarrow sh} \approx 3.2 \times 10^{-9} (n_u L_c)^{1/2}$ $T_u\Big|_{cond \Leftrightarrow det} \approx 1.1 \times 10^{-9} (n_u L_c)^{1/2}$

> Near SOL (R-Rsep \leq 3cm) conduction-limited regime

Far SOL (R-Rsep \geq 3cm) sheath-limited regime

NSTX SOL parameter profiles

S All profiles have long tail in the far SOL Offset exponential fitting to the whole profile

Near SOL widths appear to follow classical relationship $\widehat{\mathbb{O}}$ $\widehat{\mathbb{O}}$ (1) Fitting to Simple exponential
Observed ratioPredicted ratio $\widehat{\mathbb{O}}$ $\widehat{\mathbb{$

(2) Fitting to Offset exponential Observed ratio Predicted ratio $\lambda_{Te}/\lambda_q \sim 1.84$ \leftarrow $\lambda_{Te}/\lambda_q = 2.2$ $\sim 18\%$ different

 $\$ j_{sat} profiles from the fast probe and q_{\top} profiles from the IR camera $\$ The apparent radial 'shift' of j_{sat} profiles with respect to each other thought to be due to the uncertainty in magnetic equilibrium reconstruction

S T_e and n_e profiles from the fast probe
S Large R-R_{sep} values for the profiles & the respective profile 'shift' is believed to be due to uncertainty in magnetic reconstruction

S However, TS data points too sparse, does not allow for decay length fitting Work underway to ensemble TS data points as a function of R-R_{sep} to evaluate decay lengths

λ_q stays the same with $< n_e >$ increase by 50%

$\$ q_{\perp} profiles from the IR camera $\$ n_{e} profiles from TS

S Although some decay length variation seen, no consistent trend observed S Other datasets with different density variation (higher than a factor of 2, but with no IR heat flux data) show no change in $\lambda_{Te} \& \lambda_{ne}$

 $\$ q_ profiles from the IR camera $\$ No fast probe data obtained for power scan

§ This trend is also shown in more datasets

Qualitative comparison with H-mode SOL width scaling laws from conventional tokamaks

$$\lambda_{Te} \propto n_e^{0.92 \pm 0.18} I_p^{-1.79 \pm 0.27} (P_{tot} - P_{rad})^{-0.63 \pm 0.09}$$
 from AUG¹

$$\lambda_{ne} \propto n_e^{1.11 \pm 0.13} I_p^{-2.25 \pm 0.16}$$

from AUG¹

$$\lambda_q \propto B_t^{-0.93} q_{95}^{0.41} P_{SOL}^{-0.48} n_{e,u}^{0.15}$$
 from JET²

 ${\mathbb S} \ \lambda_{Te}$, λ_{ne} , and λ_q dependences on I_p and power consistent with scaling laws ${\mathbb S} \ \lambda_q$ dependence on density consistent with the scaling law ${\mathbb S} \ \lambda_{Te}$ and λ_{ne} dependence on density shows different trend from scaling laws

¹K. McCormick, JNM 266-269 (1999) 99 ²W.Fundamenski, NF 44 (2004) 20

Summary and conclusions

S NSTX near SOL plasma is conduction dominated

 \mathbb{S} Relation between λ_{Te} and λ_{a} in near SOL plasma follows classical prediction

 \leq Confirmed dependence of λ_q , λ_{Te} , λ_{isat} , and λ_{ne} on I_p , power, and $\langle n_e \rangle$

negative dependence on I_p and power

no dependence on <n_>

 λ_q variation appears to be driven primarily by λ_{Te} variation

 $\lesssim \lambda_{ne}$ remains unchanged by any parameter scan

S Comparison of experimental data with H-mode scaling laws from conventional tokamaks

> λ_{Te} , λ_{ne} , and λ_{a} dependences on I_{p} and power consistent with scaling laws

 λ_{a} dependence on density consistent with the scaling law

 λ_{Te} and λ_{ne} dependence on density shows different trend from scaling laws

