2-D Divertor Design Calculations for the NHTX

J. Canik, R. Maingi, L. Owen Oak Ridge National Laboratory

J. Menard, R. Goldston Princeton Plasma Physics Laboratory

M. Kotschenreuther, P. Valanju, S. Mahajan Institute for Fusion Studies, UT-Austin

- Introduction to NHTX
- Code description
- Parameter scans with simple divertor plates
 - Single configuration:
 - Power scan from 10-50 MW at neped ~ 1.5e20
 - Density scan from 7.5e19 3e20 at P=30 MW
 - Recycling scan from 0.9-0.99
 - Impurity radiation scans for carbon, neon, argon
 - Calculations for three other configurations
- Potential solutions
 - Conventional vertical target
 - IFS "Super-X" Divertor (UT-Austin)
- Discussion and conclusions

J.E. Menard, Seminar at GA, 2/8/07 NHTX can lead the field in the integration necessary for successful CTF/FDF & Demo

	R (m)	a (m)	P (MW)	P/R (MW/m)	P/S (MW/m ²)	Pulse	I (MA)	Species	Comments
JT-60SA	3.01	1.14	41	14	0.21	100	3.0	D	JA-EU Collaboration
KSTAR	1.80	0.50	29	16	0.52	300	2.0	H (D)	Upgrade Capability
LHD	3.90	0.60	10	3	0.11	10,000	-	Н	Upgrade capability
SST-1	1.10	0.20	3	3	0.23	1000	0.2	H (D)	Initial heating
W7-X	5.50	0.53	10	2	0.09	1800	-	Н	30MW for 10sec
NHTX	1.00	0.55	50	50 *	1.13	1000	3.5	D (DT)	Initial heating
ITER	6.20	2.00	150	24	0.21	400-3000	15.0	DT	Not for divertor testing
Component Test Facility Designs									
CTF (A=1.5)	1.20	0.80	58	48	0.64	weeks	12.3	DT	2 MW/m^2 neutron flux
FDF (A=3.5)	2.49	0.71	108	43	1.61	weeks	7.0	DT	2 MW/m^2 neutron flux
Demonstration Power Plant Designs									
ARIES-RS	5.52	1.38	514	93	1.23	months	11.3	DT	US Advanced Tokamak
ARIES-AT	5.20	1.30	387	74	0.85	months	12.8	DT	US Advanced Technology
ARIES-ST	3.20	2.00	624	195	0.99	months	29.0	DT	US Spherical Torus
ARIES-CS	7.75	1.70	471	61	0.91	months	3.2	DT	US Compact Stellarator
ITER-like	6.20	2.00	600	97	0.84	months	15.0	DT	ITER @ higher power, Q
EU A	9.55	3.18	1246	130	0.74	months	30.0	DT	EU "modest extrapolation"
EU B	8.60	2.87	990	115	0.73	months	28.0	DT	EU
EU C	7.50	2.50	794	106	0.71	months	20.1	DT	EU
EU D	6.10	2.03	577	95	0.78	months	14.1	DT	EU Advanced
SlimCS	5.50	2.12	650	118	0.90	months	16.7	DT	JA
CREST	7.30	2.15	692	95	0.73	months	12.0	DT	JA

<u>NHTX mission:</u> "To study the integration of high-confinement, high-beta, long-pulse non-inductive plasma operation with a fusion-relevant high-power plasma-boundary interface."

SOLPS is used to calculate SOL plasma properties

- SOLPS: Scrape Off Layer Plasma Simulation
 - 2D plasma fluid code (B2.5)
 - Plasma transport through SOL to targets
 - Monte Carlo neutrals code (Eirene)
 - Takes wall fluxes, returns neutral sources to B2
 - Two are coupled via
 - Atomic processes (ionization, recombination)
 - Plasma-wall process (recycling, sputtering)
- Plasma transport assumptions
 - Classical in parallel direction
 - Cross-field transport coefficients D, $\chi = 0.4$, 1.6 m²/s
- Core boundary conditions
 - Input power fixed to values between 10 and 50 MW
 - Density fixed between 7.5x10¹⁹ and 3.0x10²⁰ m⁻³
- Targets Recycling coefficients set to 0.90-0.99 (1 elsewhere)

2-D SOL and divertor calculations completed for four different configurations

Comparison of Equilibrium to Computational Grid

Midplane profiles at fixed core density, P = 10 - 50 MW

SOL plasma is sheath-limited near separatrix: T, n ~ midplane values

Total heat flux is up 70 MW/m² at outer target

Density scan: Midplane, target profiles at fixed P (30MW), n_{core} = 0.75-3.0e20

Peak heat flux is fairly insensitive to separatrix density

Recycling scan:

Away from OSP, divertor moves towards high-recycling regime

Adding impurities: SOL radiation is limited at these Te, ne

Configuration Scan:

Geometry strongly affects heat flux, divertor parameters

Conventional Solution: Vertical Target

- Geometric benefits maximized
 - Highest flux expansion magnetic configuration (also DN)
 - Plate tilted to 1 degree wrt B
 - Maximize wetted area
 - Neutrals directed towards separatrix
 - Gas puffed into divertor
 - Raise density, get out of sheathlimited regime
- Carbon is sputtered from targets
 - Self-consistent impurity radiation
 - "Optimistic" radiator (production at targets, temperature at which it radiates good for radiating divertor)

Profiles at Vertical Target: Core density 1.5e20, P=50 MW

- Profiles shown for different levels of gas puff
- As puff increases, n_e is increased, T goes down
 - Achieve detachment near strike point
 - Up to 15 MW radiated power ($Z_{eff} = 1.4$ in core)
- Heat flux can be brought down to < 10 MW/m²
 - But this is at high gas throughput
 - Power is split between two divertors (due to double null)
 - Effective P/R is more like 25 (MW/m)
 - Better test is using SN configuration

SOLPS Modeling of NHTX with a Super-X Divertor

- Strategy: move targets to higher R
 - Decrease P/R
 - Increase connections lengths

*M. Kotschenreuther, P. Valanju, S. Mahajan, APS-DPP07

- Core density = 7.5e19 to 3.0e20
- Input power = 50 MW
- Pure deuterium plasmas
- Pumping at plates
- Somewhat pessimistic scenario
 - No impurity radiation
 - Likely to be sheath-limited
 - Low density divertor from target pumping
 - Neutrals directed away from separatrix

SOLPS Modeling of NHTX with a Super-X Divertor

- Peak heat flux can be brought down to < 10 MW/m²
 - Equivalent standard divertor: 34 MW/m²
 - Could allow operation at low edge density
- "Less" sheath-limited
 - Te still high near separatrix, but much lower than the equivalent standard case (~400 eV for the blue curve)
 - Closer to radiating divertor

- NHTX allows a wide operational range of heat fluxes for PFC evaluation
 - Can be varied by a factor of ~ 10
 - Heat flux can be very high well above 10 MW/m²
- Results illustrate the challenge of high heat flux boundary
 - Modeling of standard open divertors shows unacceptably high target temperature, little control over heat flux
 - High temperature, low density makes impurity radiation inefficient
- Two possible solutions have modeled
 - Vertical target can reduce heat flux below 10 MW/m2 with strong gas puff
 - Super-X Divertor is effective in controlling heat flux even in sheathlimited regime