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NSTX Investigating Use of Lithium as a Plasma Facing Material

• Primarily for density control,

• And improved plasma performance.

• NSTX lithium program proceeding in stages:

– Li pellets (FY 2005 - 2009)

– Li evaporator (FY 2006 - 2009)

– Liquid lithium divertor (FY 2009 - 2012)

– In parallel, LTX will examine efficacy of Li as the primary PFC.



Developing a Liquid Lithium Divertor (LLD)
to Provide More Pumping & Better Density Control

• Evaporated Li in NSTX has yielded positive results,

– 2006 & 2007: L-mode density reduced 50%

& H-mode density reduced 15%,

– 2008: Improved τE > 100 ms and ELM control; 1.8 s pulse length.

• But, density still increases monotonically during shot.

• ⇒ Taking next step towards more aggressive use of Li as PFC.



The Liquid Lithium Divertor Is a Joint 
Collaboration Between Sandia, UCSD, and NSTX
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Goal of LLD is to Provide Density Control in 
Both Low & High Triangularity Shapes

.



UEDGE is a 2-D Edge Plasma Transport Code

• Mesh based on experimental equilibrium with one
coordinate following flux surfaces.

• Second coordinate orthogonal except near divertor surfaces.

• Solve equations for ni, Te, Ti, u‖, φ,

– Classical transport along field lines + flux limits,

– Anomalous transport across flux surfaces ⇒ blobs.

– Navier-Stokes equation for D atoms.

– Not solving φ equation and ignoring E × B & ∇B drifts here.



Set Transport Coefficients to Match Midplane Profiles

• Thomson scattering: ne = 4.3 × 1019 m−3,
and Te = 130 eV at core boundary,

– No CHERS data here, but Ti � Te − 15 eV at smaller radii.

• Adjust D, χe, v to match midplane profiles,

– Specify each at core, separatrix, and outer wall.

– Linearly interpolate on radial mesh index,

– Constant on flux surface.

– χi = χe.



And to Match Input Power

• Power flowing in from core:

– PNBI = 1 MW −15% beam ion loss,

– POH � 1 MW,

– Prad < 0.1 MW,

– ⇒ Pin = 1.7 – 1.8 MW.

• Particle input:

– Lump external fueling into core particle source,

– Require magnitude consistent with
center stack gas puff (400 A) + NBI (18 A).
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Scan of Recycling Coeffiecients

• Theoretical lower limit = 0.1 – 0.3,

– Actual values higher due to variations in coatings & surface contamination.

– Don’t know a priori ⇒ do scan.

• First change ψn = 0.85 boundary condition from specified n & T

to specified particle flux & power,

– Fix these & transport model as recycling varied.

• Introduce LLD as reduction in R ≡ Rod = Aod,

– Lower limit: R = 0.65 set by ability of UEDGE to converge.
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Calculate Li Temperature Rise
Using Heat Conduction Calculation

• Surface temperature rise in semi-infinite solid:

ΔT = (2F/K)
√

κt/π

• LLD: Cu base with thin stainless steel barrier,

– Film of Mo sprayed on top is Li substrate.

• ⇒ LLD properties fall between those of Cu & Li.

• Calculate ΔT (t) using divertor heat flux at given R.

• Initially, Li molten between 200 & 250 ◦C,

• Take upper limit = 430 ◦C ⇒ ΔT < 200 ◦C,

– ⇒ allowable pulse length for each input power, substrate, R.



Li Temperature Limit Could Be Reached
at Maximum Input Power
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Discussion

• Simulation of existing & recycling scan will be used to
check 0-D particle balance calculations,

– Were utilized in selecting LLD radius & width.

• Use UEDGE profiles & thermal analysis to compute
reflection, sputtering, evaporation of lithium,

– Surface models based on coupled
REDEP/WBC, TRIM-SP, & MD simulations.

• Self-consistent erosion / redeposition simulation
⇒ net flow of Li away from surface,

– Feed flux back to UEDGE ⇒ Li distribution in core & SOL.


