Simulations of NSTX with a Liquid Lithium Divertor Module*

D. P. Stotler, R. Maingi¹, H. W. Kugel, A. Yu. Pigarov², T. D. Rognlien³, and V. A. Soukhanovskii³

> Princeton Plasma Physics Laboratory Princeton University Princeton NJ 08543

¹Oak Ridge National Laboratory, Oak Ridge, TN ²University of California at San Diego, San Diego, CA ³Lawrence Livermore National Laboratory, Livermore, CA

Poster presented at the 2008 Plasma Surface Interactions Meeting, Toledo, Spain *This work supported by US DOE contracts/grants DE-AC02-76CH03073, DE-AC05-00OR22725, DE-FG02-04ER54739, and W-7405-ENG-48.

NSTX Investigating Use of Lithium as a Plasma Facing Material

- Primarily for density control,
- And improved plasma performance.
- NSTX lithium program proceeding in stages:
 - Li pellets (FY 2005 2009)
 - Li evaporator (FY 2006 2009)
 - Liquid lithium divertor (FY 2009 2012)
 - In parallel, LTX will examine efficacy of Li as the primary PFC.

Developing a Liquid Lithium Divertor (LLD) to Provide More Pumping & Better Density Control

ODNSTX

- Evaporated Li in NSTX has yielded positive results,
 - 2006 & 2007: L-mode density reduced 50%
 & H-mode density reduced 15%,
 - 2008: Improved $\tau_E > 100$ ms and ELM control; 1.8 s pulse length.
- But, density still increases monotonically during shot.
- \Rightarrow Taking next step towards more aggressive use of Li as PFC.

The Liquid Lithium Divertor Is a Joint Collaboration Between Sandia, UCSD, and NSTX

 The LLD collaboration is the result of a DoE funded proposal led by Sandia National Laboratory (R. Nygren, PI).

• The basic concept is of a toroidally extended lithium containing tray that would serve as a target for the outer strike point or divertor.

Plan: SS bonded to thick Cu & sprayed with Mo. Evaporate ~ 1
 mm Li on top.

- Alternative substrate: CV deposited Mo on carbon mesh.

Goal of LLD is to Provide Density Control in Both Low & High Triangularity Shapes

- For low triangularity, goal is 50% reduction in n_e.
- For high triangularity, 25%.
- Amount of pumping & density control will depend on distance of strike point from tray.

UEDGE is a 2-D Edge Plasma Transport Code

- Mesh based on experimental equilibrium with one coordinate following flux surfaces.
- Second coordinate orthogonal except near divertor surfaces.
- Solve equations for n_i , T_e , T_i , u_{\parallel} , ϕ ,
 - Classical transport along field lines + flux limits,
 - Anomalous transport across flux surfaces \Rightarrow *blobs*.
 - Navier-Stokes equation for D atoms.
 - Not solving ϕ equation and ignoring $\mathbf{E} \times \mathbf{B} \& \nabla B$ drifts here.

Set Transport Coefficients to Match Midplane Profiles

 $\bigcirc NSTX$

- Thomson scattering: $n_e = 4.3 \times 10^{19} \text{ m}^{-3}$, and $T_e = 130 \text{ eV}$ at core boundary,
 - No CHERS data here, but $T_i \simeq T_e 15$ eV at smaller radii.
- Adjust D, χ_e, v to match midplane profiles,
 - Specify each at core, separatrix, and outer wall.
 - Linearly interpolate on radial mesh index,
 - Constant on flux surface.

 $-\chi_i = \chi_e.$

And to Match Input Power

- Power flowing in from core:
 - $P_{\text{NBI}} = 1 \text{ MW} 15\%$ beam ion loss,
 - $P_{OH} \simeq 1$ MW,
 - $P_{rad} < 0.1$ MW,
 - $\Rightarrow P_{\text{in}} = 1.7 1.8$ MW.
- Particle input:
 - Lump external fueling into core particle source,
 - Require magnitude consistent with center stack gas puff (400 A) + NBI (18 A).

UEDGE Simulation Based on Shot 128339 @ 0.35 s

Use Midplane Profiles to Set Transport Coefficients

• $\chi(\psi) = 1.5 \rightarrow 25 \rightarrow 35 \text{ m}^2/\text{s}.$

current to core: 142 A.

Divertor Profiles Reasonable with Nominal Pumping

- $\mathcal{A} = \mathsf{D}$ "albedo"
- Improving D_{α} agreement requires much more complex approach.

Scan of Recycling Coeffiecients

- Theoretical lower limit = 0.1 0.3,
 - Actual values higher due to variations in coatings & surface contamination.

 $\bigcirc NSTX$

- Don't know *a priori* \Rightarrow do scan.
- First change $\psi_n = 0.85$ boundary condition from specified n & T to specified particle flux & power,
 - Fix these & transport model as recycling varied.
- Introduce LLD as reduction in $\mathcal{R} \equiv \mathcal{R}_{od} = \mathcal{A}_{od}$,
 - Lower limit: $\mathcal{R} = 0.65$ set by ability of UEDGE to converge.

Scan of Recycling Coefficients will Feed into Future Work

- Will compare core density with 0-D particle balance calculations.
- Peak divertor n_e & T_e impact lithium transport.
- Total current drops 40 x,
 - Compare with 3 x drop in D_{α} in CDX-U \Rightarrow Difficult to approach theoretical minimum recycling in practice.

Calculate Li Temperature Rise Using Heat Conduction Calculation

• Surface temperature rise in semi-infinite solid:

 $\Delta T = (2F/K)\sqrt{\kappa t/\pi}$

- LLD: Cu base with thin stainless steel barrier,
 - Film of Mo sprayed on top is Li substrate.
- \Rightarrow LLD properties fall between those of Cu & Li.
- Calculate $\Delta T(t)$ using divertor heat flux at given \mathcal{R} .
- Initially, Li molten between 200 & 250 °C,
- Take upper limit = 430 °C $\Rightarrow \Delta T < 200$ °C,
 - \Rightarrow allowable pulse length for each input power, substrate, \mathcal{R} .

Li Temperature Limit Could Be Reached at Maximum Input Power

- ΔT shown for \mathcal{R} = 0.65 case.
- Baseline has 1.8 MW input,
- Consider also 7.2 MW,
 - Scale heat flux x 4.

- 1.8 MW Cu case not shown, all > 5 s.
- Present 2 s discharges OK for 1.8 MW Li.

- But, pulse length restricted at 7
 - Especially if Li coating thick.

- Were utilized in selecting LLD radius & width.
- Use UEDGE profiles & thermal analysis to compute reflection, sputtering, evaporation of lithium,
 - Surface models based on coupled REDEP/WBC, TRIM-SP, & MD simulations.
- Self-consistent erosion / redeposition simulation
 ⇒ net flow of Li away from surface,
 - Feed flux back to UEDGE \Rightarrow Li distribution in core & SOL.