

NSTX-U is sponsored by the **U.S. Department of Energy Office of Science Fusion Energy Sciences**

Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

Gary Taylor¹, Nicola Bertelli¹, Stefan P. Gerhardt¹, Joel C. Hosea¹, Dennis Mueller¹, Rory J. Perkins¹, Francesca M. Poli¹, James R. Wilson¹, and Roger Raman²

¹Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA ²William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA

Introduction

- A Fusion Nuclear Science Facility based on spherical tokamak (ST) concept needs to operate with little or no inductive drive from a central solenoid [1]
- The National Spherical Tokamak Experiment Upgrade (NSTX-U) [2] research program aims to develop fully non-inductive plasmas
- Fast-wave heating on NSTX-U may effectively ramp low plasma current (I_p) plasmas non-inductively to a level suitable for 12 MW of neutral beam injection [3]

For the case shown in figure 4, the T_e profile becomes very peaked during the **RF pulse (dashed line in figure 5(a))**

- 90% of the RF-driven current is within r/a = 0.2 at 0.4 s (figure 5(b))
- Peaking of $T_e(0)$ and the RF heating profile at higher P_{rf} , and particularly at higher $B_{T}(0)$, caused simulations to become unstable and terminate ~ 0.2 s

- On NSTX, at toroidal field, $B_T(0) = 0.55$ T, 1.4 MW of **30 MHz fast-wave power (P_{rf}) increased central** electron temperature, $T_{e}(0)$, from 0.2 to 2 keV in 30 ms:
 - An H-mode was generated (shot #138506) with non-inductive fraction, $f_{NI} \sim 0.7$ at $I_p = 300$ kA [4] (Figure 1)
- On NSTX-U P_{rf} up to 4 MW will be coupled into plasmas with $B_T(0)$ up to 1 T
- TRANSP free boundary transport simulations [5] have been run for NSTX-U $I_p = 300$ kA plasmas to predict the dependence of f_{NI} on $B_T(0)$ and P_{rf}
- The TORIC full wave spectral code [6] was used in the simulations to calculate fast-wave heating and current drive

Predictive Modeling Assumptions

- Multimode MMM7.1 [7] thermal transport model used in simulations gave reasonably good agreement to plasma parameters obtained during NSTX shot #138506
- Effective charge, impurity, plasma rotation and other profiles were taken largely from NSTX shot #142305, part of an experimental campaign to support NSTX-U and next-step ST devices [8]
- Simulations used $k_{\mu} = 8 \text{ m}^{-1}$ antenna phasing, the current drive antenna phasing used for shot #138506

- f_{NI} versus P_{rf} for $n_e(0) = 1.15 \times 10^{19} \text{ m}^{-3}$ simulations is shown in figure 6, the f_{NI} achieved during NSTX shot #138506 is shown by the pink symbol:
 - All the $B_{T}(0) = 1$ T simulations and the $B_{T}(0) = 0.89 T$ simulations with $P_{rf} > 2 MW$ became unstable and terminated ~ 0.2 s
 - Increasing P_{rf} from 1.4 to 4 MW at least doubles f_{NI} for the $B_T(0) = 0.5 T$, 0.65 T and 0.75 T simulation

• Increasing $B_{T}(0)$ from 0.5 to 0.65 T significantly increases f_{NI}, however **f**_{NI} decreases for simulations with $B_T(0) > 0.65$ T, at all values of P_{rf} (figure 7)

Figure 7

- Electron density profile and central density (n_e(0)) were initially chosen to be similar to shot #138506, which had $n_{e}(0) = 1.15 \times 10^{19} \text{ m}^{-3}$:
- $n_{e}(0)$ was ramped in 100 ms, a H-mode transition was then imposed by flattening the density profile (Figure 2)

Results

- Simulation were run for a NSTX-U plasma with the same P_{rf} , I_p and $n_e(0)$ as NSTX shot #138506, and $B_{T}(0) = 0.5$ T, compared to $B_{T}(0) = 0.55$ T for shot #138506 (Figure 3):
 - $T_{e}(0)$ during simulation was 2.2-2.4 keV, compared to 2.5-3 keV during shot# 138506
 - *f_{NI}* during the simulation reached 0.6, compared to the f_{NI} = 0.7±0.2 achieved during shot #138506

- Figure 6
- Increasing $n_e(0)$ to 1.43x10¹⁹ m⁻³ allowed stable simulations up to $P_{rf} = 4$ MW at $B_T(0) = 1$ T, f_{NI} at 0.4 s versus P_{rf} for $n_e(0) = 1.43 \times 10^{19}$ m⁻³ simulations is shown in figure 8:
 - With P_{rf} = 4 MW all simulations with $B_{\tau}(0) \ge 0.65$ are fully non-inductive, however f_{NI} is lower compared to the $n_{\rm e}(0) = 1.15 \times 10^{19} \, m^{-3}$ simulations at same P_{rf} and $B_T(0)$

• f_{NI} increases significantly when $B_T(0)$ is raised from 0.5 T to 0.65 T, but decreases when $B_T(0)$ increases from 0.75 to 1 T, as for the $n_{e}(0) = 1.15 \times 10^{19} \text{ m}^{-3}$ simulations (Figure 9)

Conclusions

- f_{NI} reached 1.7 during $n_e(0) = 1.15 \times 10^{19} \text{ m}^{-3}$ simulations when $P_{rf} = 4$ MW was coupled into a $B_{T}(0) = 0.65$ T plasma (Figure 4):
 - During the RF pulse bootstrap current remains constant around 100 kA and the RF-driven current reaches 370 kA at 0.4 s

- Simulation results support the possibility of achieving a stable $I_p = 300$ kA NSTX-U plasma with $f_{NI} \ge 1$ with $P_{rf} > 2$ MW
- However the simulations also predict that the plasma may become more unstable as P_{rf} and $B_T(0)$ are increased if $n_e(0)$ is too low, and increasing $B_T(0)$ above 0.65 T is predicted to lower the f_{NI} achievable at a given P_{rf}
- These simulation predictions must now await experimental validation on NSTX-U

References

1. Y.-K.M. Peng, et al., Fusion Sci. Technol. 56, 957 (2009) 2. J. E. Menard, et al., Nucl. Fusion **52**, 083015 (2012) 3. F. M. Poli, et al., Nucl. Fusion 55, 123011 (2015) 4. G. Taylor, et al., Phys. Plasmas **19**, 042501 (2012) 5. R. Andrei, Bull. Am. Phys. Soc. 57, 12 (2012) 6. M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002) 7. T. Rafiq, et al., Phys. Plasmas **20**, 032506 (2013) 8. S. P. Gerhardt, et al., Nucl. Fusion **51**, 073031 (2011)

