
A MAGNET CURRENT MONITOR FOR
GYROTRON MAGNET POWER SUPPLIES*

N. Greenough1, J. Lohr2
1Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451

2General Atomics, San Diego, CA 92121
ngreenou@pppl.gov.

Abstract— Gyrotrons are widely used in Electron-Cyclotron

Heating systems (ECH) to heat electrons in plasmas. Modern
gyrotrons require a precise magnetic field for proper operation
which is supplied by an electromagnet with multiple windings.
The current for the electromagnet is provided by multiple high-
current power supplies. The loss of any one of the power supplies
during operation can cause significant and expensive damage to
the gyrotron. An independent power supply monitoring system
can prevent damage should a magnet power supply fail.

This paper presents a magnet current monitor system capable
of measuring and monitoring five magnet currents
simultaneously. It provides limit tests, an interlock output for
power supply failures and a status display for the operator. A
self-test feature is included and the measurements and status can
be examined through an Ethernet connection.

The rapid advance of inexpensive microcontroller technology
has led to the development of small microcontroller platforms
and associated code libraries that have dramatically decreased
the costs and development time required for such projects. This
paper describes the use of a popular open-source software, open-
hardware platform for the design and fabrication of the magnet
current monitor.

I. INTRODUCTION
Megawatt-level millimeter-wave RF power sources use

gyrotrons for RF power generation. Gyrotrons require a precise
magnetic field for proper operation which is supplied by an
electromagnet with multiple windings. The current for the
electromagnet is provided by multiple high-current power
supplies. The loss of any one of the power supplies during
operation can cause significant and expensive damage to the
gyrotron. An independent power supply monitoring system can
prevent damage should a magnet power supply fail or be
powered off inadvertently. This paper describes an
independent, non-contacting current monitor for the magnet
power supplies fabricated from inexpensive and widely-
available microcontroller components.

The typical gyrotron magnetic system requires as many as
6 or more independent power supplies. The superconducting
magnets for the gyrotron installation at General Atomics
require five power supplies plus an AC sweeping magnet for
the gyrotron collector. The failure of any one of these power
supplies can cause electron beam impingement and melting of
internal components of the gyrotron. Prompt removal of the

high voltage is required should a magnet power supply current
fall outside a specified set of limits.

II. FEATURES AND SPECIFICATIONS
The magnet current monitor system being prototyped for

General Atomics has the following features:

• Five independent DC magnet current measuring
channels using non-contacting 50 ampere Hall current
sensors, appropriately filtered for superconducting
magnets

• One or two sweep coil current measuring channels
using 50 ampere non-contacting Hall current sensors

• Resolution of approximately 0.1 ampere on all channels

• Dual limit test on all DC current monitor channels- high
and low tolerance limits for information; high and low
operating limits for fault signaling

• AC and DC test for the sweep current monitor
channels- high and low limits on average sweep coil
current; high and low limits on AC sweep coil current

• Interlock outputs for magnet and sweep power supplies
“OK”

• Intelligent status output over Ethernet or USB using an
SCPI-like command set

• A local LCD display for magnet power supply status,
limit and device setup

• Simple 5-button, menu based user interface for setup

III. INSTALLATION
The magnet current monitor is intended to be installed

adjacent to the magnet power supplies. The current sensors are
installed on the magnet leads near the power supplies. An
existing magnet lead interconnect panel mounted above the
power supplies presently provides a convenient location for the
current sensors. The measurement chassis can be mounted in a
cabinet nearby for operator convenience. Figure 1 shows a
physical layout of the measurement chassis and sensors.

*This work supported by the US DOE Contract No. DE-AC02-09CH11466.

Fig. 1. Magnet Current Monitor Physical Layout

The requirements of this device are well within the
capabilities of a mid-range dedicated microcontroller from a
number of different manufacturers. Internal multichannel A/D
converters, sufficient I/O pins, watchdog timers and on-chip
serial communications hardware of several types are common.
Some important selection considerations are:

• Sufficient on-chip peripherals such that external
circuitry is minimized

• On-chip flash program, data and non-volatile memory

• Support for programming languages appropriate for
the application

• Availability of pre-tested library code and application
samples simplifying development

• Availability of a user-friendly programming
environment eases less-experienced programmers

• Footprint suitable for low-volume production, no fine-
lead-pitch package assembly challenges

• In-field software upgradeability via a common
interface; no expensive programming devices needed

• Well-established user base assuring future availability
and upgrade paths

The “Arduino” microcontroller board series, associated “C”
compiler and software libraries meet the needs of this project.
The hardware is widely available and second-sourced, the
compiler and libraries are licensed under the GPL non-
proprietary software license which assures future availability,
and the entire source code for the compiler and libraries is
freely available for examination and modification [1].

The Arduino system is based on the AVR brand of
microcontrollers and offers several choices suitable for this
application. The system is PC board based, with the
microcontroller, 5-volt regulator, USB interface and I/O
connectors on the board. It is small and can be readily
daughter-boarded to a larger custom PC board in cases where
additional circuitry is required.

The Arduino boards are typically programmed in C using
the well-known GCC cross-compiler running under a
development editor/uploader. The boards attach to the
development computer with a simple USB cable which also
allows rudimentary debugging and monitoring.

Two Arduino boards were chosen for evaluation; the
“UNO” containing an ATMEGA28p processor and the
MEGA2560 containing the ATMEGA2560 processor. The
UNO is the smaller of the two, with 32K of program memory
and 2K of data memory. The MEGA2560 offers 256K program
memory and 8K data memory. The UNO offers a socketed
processor allowing program upgrades by processor swap. The
MEGA series has more I/O pins and larger memory spaces for
more complex processing if needed.

An initial DC magnet current demonstration was developed
using the UNO board. The entire button-and-menu-based
control code, the analog measurement code and the limit
testing code readily fit in about 1/3rd of the available program
memory. The user interacts with the demo using 5 buttons to
control menus, make choices and set parameters.

Figure 2 shows a demonstration version of the magnet
current monitor Most all of its software features are in place
except the remote interface. The potentiometer is a stand-in for
one of the Hall-effect current sensors.

 Array spaces, however, taxed available data memory on
the UNO when AC sweep coil measurements were added.
Development was therefore moved on to the larger
MEGA2560 board for further work.

Fig. 2. Magnet Current Monitor Physical Layout

Figure 3 shows a functional block diagram of the Magnet
Current Monitor. It consists of six or more Hall-effect current
transducers, analog input processing circuitry, the
microcontroller with its on-board processing program, an LCD
display, user buttons, interlock and status outputs, and self-test
circuitry.

Passive style Hall transducers were chosen for this project

due to their increased ruggedness in hostile environments over
active types that include feedback coils. The loss in accuracy is
slight in modern models. They have a single-ended Hall bridge
output and require a small DC bias current. The output swing is
about +/- 2 volts for 50 ampere versions.

Fig. 3. Magnet Current Monitor block diagram

Some analog input processing circuitry is required to
interface the Hall sensor to the 0 to 5-volt range of the on-chip
A/D converter of the microcontroller. Filtering, transient
protection, zeroing, scaling and offsetting are required.

The microcontroller takes care of most all of the tasks
required for the magnet current monitor. It acquires data from
the on-chip A/D representing magnet currents, checks against
user-settable limits for each magnet, and issues interlock
outputs based on the limit tests. The speed requirements are
minimal as the superconducting magnet time constants are
several seconds. The limits and other operational parameters
are stored in on-chip non-volatile storage so that
reprogramming is not required. The limits and parameters are
recovered automatically at power up.

The intelligent interface is an input/output from the

microcontroller that sends more specific status and control
information to the gyrotron control system. It consists of text-
based high level commands and responses similar to the SCPI
instrument control language. The gyrotron control system can
request information such as individual magnet currents and
their limit test responses. Optionally it can allow altering the
limits of the tests. This allows a remote mimic display, for
example, of the measured magnet currents to be provided for
the gyrotron system operators.

The self-test feature is included to proof the magnet
monitor itself either upon demand or periodically. It operates
by inducing a significant current into the Hall sensors with a
secondary winding and monitoring the measurements produced
for the correct responses. The interlock outputs will be forced
to the failed state during the self-test routine to prove their
efficacy to the gyrotron control system.

IV. SYSTEM CODE
Microcontrollers differ from higher-level computer systems

in that they do not have a background operating system. The
programmer codes all of the tasks to be accomplished either
with custom-written code or by invoking pre-written library

code with the appropriate parameters. The benefit of this
architecture is increased reliability due to the very limited
number of processes running simultaneously, often only two to
four. Compare this to the hundreds of simultaneous processes
that a typical operating system such as MacOS, Windows or
Linux invokes. The programmer can be very confident about
just what his code is doing at most every instant of time. There
is considerably less chance of inter-process conflict.

The code for the magnet monitor is written in a simplified
C using the GPL-licensed GCC compiler and Arduino editor.
The Arduino editor and compiler provide background code to
initialize the processor and get it ready to run user code at
startup. It also provides a library of higher-level system calls
such as analogRead(analogChannel) to obtain A/D data and
serial.print() to output data from the on-chip serial port.

The measurement of DC magnet coil current is
straightforward. Accept a value from the on-chip A/D
converter and format it appropriately, then filter it with the
equivalent of a low-pass filter. The filtering can be performed
by emulating an R-C network in code. Assume that an output
value from a previous cycle has been saved. Take a fraction of
the difference between the new value and the previous output
value and add it to the previous output value to create the new
output value for this pass. The “fraction taken” controls the
time constant of the filter which can be adjusted to meet real-
world noise rejection requirements.

Measurement of AC sweep coil parameters is more
interesting. Ideally code can watch for the maximums and the
minimums of the typical sawtooth sweep coil current. Doing so
with a fixed sample rate of the A/D converter leads to large
errors. A beat frequency appears in the data caused by the
difference between the sample rate of the A/D clock and the
sweep coil sawtooth frequency. There are a number of possible
solutions to this; incoherent sampling and a Fast Fourier
Transform (FFT) are two of many possibilities.

Incoherent sampling relies on the fact that the statistics of a
set of fixed-time-increment samples taken in order; a set of
fixed-time-increment samples in random order; and a set of
samples taken at random times are identical given sufficient
samples. This technique was first made known to the author by
the Hewlett-Packard (now Agilent) 3406 Sampling RF
Voltmeter circa 1966. Its manual has a clear explanation of
how the technique works and how randomness can be
simulated by a frequency-sweeping A/D sample clock [2].

An approximation of incoherent sampling is relatively
simple to execute in software due to the looping nature of
microcontroller code. Simply introduce a random delay to the
A/D sample loop timing. Tests of this technique showed peak
and minimum detection jitter of about .5 to 1% over 1024
samples of the typical sweep coil waveform. This is well
within the accuracy required for the application. Averaging to
obtain the DC component of the sweep was done by summing
all 1024 samples and dividing by 1024. The averaging
algorithm was less successful with about 2% jitter.

The Fast Fourier Transform technique may provide
superior sweep coil parameter detection. An excellent integer
FFT code is available for the Arduino and processes 256-

sample FFTs in about 8 milliseconds [3]. A standard FFT
processes N samples at T sample rate into N/2 sample bins at a
frequency spacing of T/N. Theoretically Bin #0 represents the
DC component of the sweep coil waveform, the bin with the
largest value represents the sweep coil frequency, and the sum
of all bins except #0 indicates the total sweep coil AC energy.
There are intricacies with this method, however. The
windowing function used sets the available accuracy due to its
influence on the binning. Obtaining a fixed-rate sample clock
for an A/D converter in a higher-level language such as C can
prove difficult due to its isolation from the hardware. Luckily,
the internal peripheral control register names are known to the
GCC compiler. Information and code examples for obtaining a
fixed-rate interrupt on the Arduino can be found on the Internet

[4]. A description of the FFT mathematics and windowing
functions can be found on many Internet sites [5]. The FFT
technique has not yet been tested.

There is little point in including volumes of C code in this
paper. However, there are some interesting techniques worth
examining that proved useful in coding the magnet monitor.

Calling a function in C involves the compiler copying all of
the parameters to a “heap” (a scratch area of volatile memory)
then jumping to the code of the function. When the function
ends the code returns to its previous position in the program
and the heap is discarded. Only one parameter can be returned
by the function, such as a calculated variable or the address of
some data. This causes difficulties for microcontrollers with
very limited volatile memory if the function’s parameters
involve arrays or other large structures of data. There is a
simple solution to the dilemma: pass the address of the data
structure to the function and have it operate on the data
structures in-place without making copies. This has the added
benefit of being able to write one function and have it operate
on multiple data structures. It is a simple concept but the syntax
to code it is obscure. Examples of this technique can be found
on the Internet and programming books with varying levels of
clarity. The following shows one complete example coded for
Arduino [6]:

// Set up a simple structure with three variables in it
struct mydata {
 int item1, item2, item3;
};
// Now declare a couple of instances of type mydata...
 struct mydata astruct, anotherstruct;
 int X, Y; // And a few scratch variables
// The "setup" routine runs once when you press reset:
void setup() { // Nothing needed here
}
// The "loop" routine runs over and over again forever:
void loop() {
/* Initialize one of the variables in the structure using dot
notation */
 astruct.item1 = 10;
 anotherstruct.item1 = 6;

/* Now call a function to do something to the calling structure.
Call it with the address of the structure. Do something that
modifies astruct */
 afunction(&astruct);
//Now do the same “something” to anotherstruct
afunction(&anotherstruct);
/* This allows us to do the SAME thing to DIFFERENT data
sets */
/* Now look at the modified structures using dot notation */
 X = astruct.item2; /* X gets assigned 50 here, as
modified by afunction */
 Y = anotherstruct.item2; /* Y gets 30 from
afunction. */
// The same “afunction” thing is done to both structures.
}
/* Now the function. Reference the structure from the call by a
pointer “*” */
void afunction(struct mydata *d) {
/*”d” can be any name. Access elements of the structure by
name using “->” or “(*).“ notation */
 d->item2 = 5 * d->item1; // Dummy action
 (*d).item3 = 9 * (*d).item1; // More dummy
} // Either form works.

V. CONCLUSION
The Gyrotron Magnet Current Monitor is a protection

device designed to prevent operation of high-power gyrotrons
in case of incorrect magnetic fields. The design is in the
prototype implementation stage, and is general-purpose enough
to be applicable for other current-monitoring systems. It is
implemented with a simple microcontroller with minimal
external circuitry and can be reproduced at moderate cost. Its
hardware, internal programming, programming environment
and software tools are all open-source and royalty-free. It can
be programmed or re-programmed in the field with an ordinary
computer of most any type with nothing more than a USB
cable.

VI. REFERENCES
[1] See www.arduino.cc main page.
[2] “Model 3406A Broadband Sampling Voltmeter Operating and Service

Manual”, Hewlett-Packard Corporation, 1966, p.4.1 on; can be located
at www.agilent.com, search on “3406A”.

[3] See http://wiki.openmusiclabs.com/wiki/ArduinoFFT for a fast integer
FFT library compiled for Arduino.

[4] http://hobbytronics.co.uk/arduino-timer-interrupts provides one of the
clearer examples of the technique.

[5] One of the more entertaining references is at www.katjaas.nl
[6] Patterned after “New C Primer Plus”, Waite Group, 1990 p. 559.

