
A NEW HIGH-EFFICIENCY STEPPER MOTOR DRIVER
FOR OLD TECHNOLOGY STEPPER MOTORS*

N. Greenough, C.C. Kung
Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451

ngreenou@pppl.gov.

Abstract— Stepper motors have been used to drive
mechanical systems for many decades. Stepper motors require
a current-limited multiphase driver, and techniques have
evolved from simple resistive drivers to complex high
efficiency, high-performance switching devices. The first high-
efficiency switching designs were patented over 30 years ago
and have become widely used throughout industry. This has
caused a shift in driver technology from a quad-drive system to
an H-bridge system, and a change in motor design from four
windings to two.

There are a great many older systems with the earlier
motor technology still in use. Retrofitting such systems can
take one of several paths:

• Replacing the entire mechanical drive motor system,
its driver, and reworking all the associated communications
protocol between the driver and the outside world;

• Choosing a high-efficiency “H”-bridge driver, re-
working its communications protocol and raising the drive
voltages to hazardous levels to get the older-technology
motor to perform adequately;

• Designing a high-efficiency, high-performance motor
driver system that will work with older-technology motors
and existing communications protocols.

This paper presents a high-efficiency, high-performance
stepper motor driver and that provides all the advantages of a
modern motor driver, yet works with existing older-technology
stepper motors. It also solves a well-known failure mode of the
standard “H” bridge drive system, and will pay for itself in
decreased electrical energy costs compared to an old-
technology resistive driver. An application-specific
communications controller and motor driver will be described
to create a drop-in replacement for an existing controller-
driver system.

I. INTRODUCTION (Heading 1)
The modern approach to high-efficiency stepper motor

drive systems is a switch mode H-bridge driver configuration
feeding a two-winding, four-wire motor. However, there are
a great many systems in the field still equipped with low-
efficiency resistive drivers and four winding (center-tapped)
motors. Converting the older-style driver requires the use of
excessively high voltage H-bridge to overcome the winding
inductance of the motor. The solution to this dilemma is a
different configuration of high-efficiency controller that can
operate with an older-style center-tapped high-inductance

stepper motor. This paper describes the design of such a
controller and its intelligent interface to an external control
system. It was commissioned by General Atomics to replace
failing stepper-motor drive systems on radio-frequency
transmission-line tuners for the high power Fast Wave
equipment on DIIID.

II. BACKGROUND
The modern approach to high-efficiency stepper motor

drive systems is a switch mode H-bridge driver configuration
feeding a two-winding, four-wire motor. However, there are
a great many systems in the field still equipped with low-
efficiency resistive drivers and center-tapped two winding, 6-
wire motors. Converting the older-style driver requires the
use of excessively high voltage H-bridge to overcome the
winding inductance of the motor. The solution to this
dilemma is a different configuration of high-efficiency
controller that can operate with an older-style center-tapped
high-inductance stepper motor. This paper describes the
design of such a controller and its intelligent interface to an
external control system. It was commissioned by General
Atomics to replace failing stepper-motor drive systems on
radio-frequency transmission-line tuners for the high power
Fast Wave equipment on DIIID.

The conversion of an older style center-tapped motor
system to a modern high-efficiency controller has several
challenges:

• The older motor winding inductance is high, requiring
hazardous drive voltages if driven by an H-bridge
controller.

• There are few high-efficiency switching controllers
available for center-tapped motors.

• There is considerable expense and effort in replacing
both motor and controller.

• The computer programs or hardware that calculate the
inputs to the motor driver system may need to be
redesigned or re-written for a different
communications protocol.

It is possible to modify the design of an H-bridge
switching controller once the current paths of the motor and
controller are understood. The modern H-bridge controller
uses one of several current-control techniques to switch and
maintain winding current at design value. When a motor step
is desired, the bridge controller turns on opposite pairs of
transistors or switch devices to place the entire power supply
across the motor winding. The winding current builds rapidly

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

due to the relatively high voltage and the motor inductance.
A current sensor then detects when the winding current
reaches design value. When detected, the drive voltage is
switched off and an idling circuit is placed around the
winding. The idling circuit recirculates the winding current
which decays slowly due to winding losses. When the
winding current has decayed a small value, the controller
recharges the current by again switching the same opposite
pair of transistors on for a brief period of time. Control
system designs differ in the aspects of current sensing,
switching and timing. One of the simpler and more
successful designs is implemented in the National
Semiconductor LMD18200 series of controller ICs [1]. The
datasheet also contains an excellent description of its
operation, and can be used as background for the following
discussion.

Some points to consider:
• A 4-wire motor winding is driven end-to-end and

reversed for stepping while a center-tapped 6-wire
motor is unidirectionally driven by half-winding.

• The 6-wire motor’s undriven half-winding must not
be loaded or the motor torque will be reduced.

• The 6-wire motor’s undriven half-winding end will
rise to twice the power supply voltage. It is a coupled
transformer.

• Current recirculation is achieved in a 4-wire motor
controller by turning on upper or lower pairs.
Recirculation can also be achieved for a center-
tapped motor by appropriate isolating diodes and
switching devices.

• It is common to double-drive the motor windings for
smoother torque. Both windings are active
simultaneously.

The following diagrams show one of the 2 windings in

both types of motors. Current flow is shown in red. There are
two phases to a high-efficiency driver: current drive and
recirculate.

The controller transitions to recirculate mode as shown in
Figs. 5 and 6 when the winding current reaches design value.
This is accomplished by turning OFF the switches that
connect to the V+, V- power supply and turning ON switches
that create a current loop around the motor. The inductance
of the motor sustains the current.

To take a step, the motor winding current is reversed on
one of the windings for the 4-wire configuration, and
swapped to the other half of the center-tapped winding for
the 6-wire configuration. The switches are driven in a mirror
image of Figures 3, 4, 5 and 6.

Figure 7 shows a simplified circuit that implements the
switching and current paths of Figures 4 and 6. Note that it
appears similar to a conventional H-bridge except that the
current path through the upper switch S1 is reversed. This is
accomplished with an isolating Shottky diode for low loss.
Note that there is no longer a direct active semiconductor
path across the V+ and V- power supply. This increases
reliability as the possibility of destructive current flow is
reduced should the drivers misbehave.

Fig. 1. Modern 4-wire motor Fig. 2. Older 6-wire motor

Fig. 3. Modern 4-wire motor,
current drive mode. S1 and S4
ON, S2 and S3 OFF.

Fig. 4. Older 6-wire motor,
current drive mode. S4 ON,
S1, S2 and S3 OFF.

V
+

V
+

V
-

V
-

Fig. 5. Modern 4-wire motor,
recirculate mode. S2 and S4
ON, S1 and S3 OFF.

Fig. 6. Older 6-wire motor,
recirculate mode. S3 ON, S1,
S2 and S4 OFF.

The upper FET needs a bias voltage raised above the V+
power supply for proper operation. The undriven motor
winding rises to 2x the V+ power supply as a consequence of
the switching current regulator. Small Shottky rectifiers and
a simple Zener regulator supply the needed bias voltage for
the upper FETs from the motor winding ends.

III. CURRENT SENSING AND CONTROL LOGIC
The current sensor located in the return to the motor

power supply detects that driven motor current has reached
design value. This event triggers the FET switch drive logic
to change over from current drive mode to recirculate mode.
The logic implements a fixed-off-time algorithm that
estimates the decay of motor winding current. The logic
transitions back to the current drive state when the off-time
expires. The off-time is typically set to 300- 400
microseconds.

An XC95108 CPLD logic device [2] and quad
comparator implement the switching logic and current sense.
The FET gate drivers are implemented with discrete
components. A complementary NPN-PNP pair provide
sufficient drive current to overcome the FET gate
capacitance in about 50-100 nanoseconds. All of the above
circuits are implemented on a printed-circuit board and
packaged in a single 12 x 18cm enclosure. The enclosure
serves as the heat sink for all the power devices. A fan is not
required as the total power dissipation is just a few watts in
operation.

IV. INTELLIGENT CONTROLLER
The second enclosure houses the intelligent half of the

system. Its function is to accept commands from an external
computer system and interpret them into a simple timed step
and direction stream for the motor controller’s CPLD. An
existing specification for the equipment being replaced
provided a starting point for the intelligent interface.

The intelligent interface interprets commands received
from a remote computer system over an RS485 interface, and
knowing the present position of the stepper motor, calculates
a number of steps and direction for the stepper motor to
achieve the desired position. In this case, the intelligent
controller section was designed to emulate the command set
of an existing controller. Commands such as “go to position

absolute”, “go to position relative”, “recalibrate”, “request
present position” and “request error status” were
implemented within the General Atomics RF antenna stub-
stretcher tuner system. The original intelligent controller was
implemented with an 8051 microcontroller and a PC board-
full of peripheral ICs. A modern PIC microcontroller was
selected that contains all of the required peripherals and more
on-chip. The PIC16F887 is a 40-pin chip that provides
enough I/O pins to directly drive a small ASCII liquid-crystal
display, five user control buttons and all the analog and
digital I/O required to support the CPLD motor controller
described above. The PIC16F887 contains flash memory for
the control program, static RAM for program variables and
non-volatile memory for storage of setup constants.

The intelligent controller has three main interfaces:

• An operator interface for direct control by personnel
for setup, troubleshooting and manual operation if
desired

• A computer interface for receiving calculated stub
and stretcher motor positions, either RS485 or
Ethernet

• An optically-coupled step-and-direction interface
with the motor driver

The operator interface is provided by a simple menu-and-
button selection system. The menus are displayed on a 2-line
by 16-character LCD and the operator makes selections and
specifies quantities with five buttons. Three of the buttons
are positioned beneath the LCD display and are labeled
dynamically by the running control program within the PIC
processor. Two buttons are positioned to the right of the
display and are primarily used by the operator to make
numeric choices.

The menu-based operator interface allows the operator to
set up the controller for a specific stub or stretcher unit
without recompiling the internal control program. Specifics
such as the RS485 address or maximum allowable motor
position are set in this manner. The setup specifics are stored
in non-volatile memory within the microcontroller and are
automatically restored at power-up. The operator can also
send the stepper motor to its inner and outer limits for
electromechanical setup, cause a recalibrate command to
synchronize the controller with the mechanical end-stops,
step the motor a small amount in either direction or send the
motor to a specified position.

The computer interface section of the intelligent
controller program was written to follow an existing bit-
frame-based specification. Each command has a set number
of bytes that varies with the command, followed by a check
byte. An “on-the-fly” state machine interpreter parses the
incoming command stream into its command, data and check
bytes. The command is executed upon correct reception of
the check byte.

The motor controller interface consists of four
optocouplers, one each for a step pulse, direction control, run
current set and accelerate current set. The step pulse is a
timed stream of short pulses, one for each requested step of

Fig. 7. Simplified ½-bridge circuit, for 6-wire motor

the motor. The direction bit is high for CW rotation, low for
CCW rotation. The default motor current is holding current
and is set at about ½ of rated winding current. This is
sufficient to restrain the stepper motor from being
mechanically back-driven by the weight of the drive
mechanism. Motor dissipation is extremely low in this state.
The motor current is raised to the rated running current when
the “Run” signal is activated. This is the manufacturer’s
rated operating current for smoothest operation of the motor
and rated temperature rise. The motor current is raised
somewhat over ratings briefly when the “Accelerate” signal
is activated. This is intended to overcome the sticky-friction
of the drive mechanism when the motor has been idle for an
extended period of time.

Acceleration is programmed into the intelligent controller
to obtain the fastest available travel time given the mass of
the motor rotor and drive mechanism without skipping steps
at startup. The step rate starts out slow and advances to a
more rapid rate. Deceleration is also employed as the motor
nears its final position. This allows the motor to be stopped
quickly without over-running its destination position.

V. ON-CHIP PROGRAM
The on-chip program that implements the user interface,

computer interface and motor driver interface is written in a
2-thread configuration for a PIC16F887 processor [3]. One
thread is activated upon a fixed-rate interrupt generated by an
on-chip timer. It is used for time-critical tasks such as motor
step timing, interfacing with the on-chip serial port, driving
the LCD display and reacting to mechanical over-travel. The
other thread occupies the remaining execution time and
handles such as computing steps and direction, interpreting
and reacting to commands received from the computer
interface and running the menu-based operator interface.

The on-chip program is written directly in the assembler
language of the PIC processor [4]. Programming directly in
the Microchip assembler allows complete control of the chip
and the path of the executing code and is the best choice for
time-critical applications.

There is little benefit from including the on-chip
firmware listing in this paper as it runs to about 100 pages of
assembler code. There are a few interesting techniques in the
code that may be of interest to readers when code size goes
above the 2 kilo-word page boundary of the basic PIC
architecture.

A. Handling Interrupts and the 2 kilo-word Page
Boundary
In practicality, the address space of the PIC program

memory is partitioned in 2 kilo-word blocks due to the
program addressing limit of 11 bits in jump or subroutine
call instructions. A special register is supplied (PCLATH) to
allow the programmer to place and access code beyond the
base 2 kilo-word block. Interrupts, however, complicate the
issue as the PCLATH register contains the high bits of the

interrupted code address, and not the location of the interrupt
service routine.

One solution is to place a stub interrupt handler in the
base memory block starting at the interrupt vector location
(usually 0004). Save W, PCLATH, FSR, STATUS and
anything else into known data memory locations. Remember
that the current data memory page is also unknown when
saving W, so use a common data memory area that appears
in all data memory blocks. All PIC processors that have
paged data memory have a common area for this purpose.
Then set PCLATH to the proper memory block where the
interrupt routine code resides and jump or call that location.
At the end of the interrupt routine, set PCLATH back to the
base memory page and jump or return to the interrupt stub in
the base page. Restore all saved registers including PCLATH
and execute the RETFIE (Return from Interrupt) instruction
to recover the correct pre-interrupt executing code location
from anywhere in memory [5].

B. Placing Code Beyond the 2KWord Page Boundary
Placing code in the higher regions of the PIC address

space has aptly been named “jumping into hyperspace” in
homage to a certain late 1970s science-fiction film. Doing
this is easiest to accomplish if the main program code does
not need to leave the base page, and only subroutines need to
be placed in the upper areas. Point PCLATH to the correct
page and “call” the relevant routine. The return is
automatically handled by the PIC, but PCLATH will remain
pointing to the subroutine’s page. Forgetting this detail will
cause the running program to jump to the incorrect page if
another subroutine is called in any page including the base
page. The results can be spectacular and debugging this error
is difficult as not even the PIC’s hardware debuggers can
follow it. It is best to explicitly force PCLATH to the proper
subroutine page before each subroutine call.

VI. CONCLUSIONS
A design for a high-efficiency driver for older-style

stepper motors has been presented. An understanding of its
switching technique may be of interest for similar retrofit
designs. The original resistive motor driver dissipated more
than 200 watts continuously and required a fan to cool it. In
contrast, the new design switching driver dissipates only
about 10 watts including its power supply and is fanless.

 An intelligent motor controller based on a modern
microcontroller has been presented. Design details and
schematics are available from the author for those interested
in further information.

VII. REFERENCES
[1] The latest LMD18200 data sheet is available from www.ti.com
[2] The latest XC95108 data sheet is available from www.xilinx.com
[3] The latest data sheet for the PIC16F887 is available from

www.microchip.com.
[4] The Microchip assembler and programming environment are

available from www.microchip.com.
[5] See www.piclist.com/techref/microchip/pages.htm for further info.

