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Abstract— Stepper motors have been used to drive 
mechanical systems for many decades. Stepper motors require 
a current-limited multiphase driver, and techniques have 
evolved from simple resistive drivers to complex high 
efficiency, high-performance switching devices. The first high-
efficiency switching designs were patented over 30 years ago 
and have become widely used throughout industry. This has 
caused a shift in driver technology from a quad-drive system to 
an H-bridge system, and a change in motor design from four 
windings to two. 

There are a great many older systems with the earlier 
motor technology still in use. Retrofitting such systems can 
take one of several paths: 

• Replacing the entire mechanical drive motor system, 
its driver, and reworking all the associated communications 
protocol between the driver and the outside world; 

• Choosing a high-efficiency “H”-bridge driver, re-
working its communications protocol and raising the drive 
voltages to hazardous levels to get the older-technology 
motor to perform adequately; 

• Designing a high-efficiency, high-performance motor 
driver system that will work with older-technology motors 
and existing communications protocols. 

This paper presents a high-efficiency, high-performance 
stepper motor driver and that provides all the advantages of a 
modern motor driver, yet works with existing older-technology 
stepper motors. It also solves a well-known failure mode of the 
standard “H” bridge drive system, and will pay for itself in 
decreased electrical energy costs compared to an old-
technology resistive driver. An application-specific 
communications controller and motor driver will be described 
to create a drop-in replacement for an existing controller-
driver system. 

I. INTRODUCTION (Heading 1) 
The modern approach to high-efficiency stepper motor 

drive systems is a switch mode H-bridge driver configuration 
feeding a two-winding, four-wire motor. However, there are 
a great many systems in the field still equipped with low-
efficiency resistive drivers and four winding (center-tapped) 
motors. Converting the older-style driver requires the use of 
excessively high voltage H-bridge to overcome the winding 
inductance of the motor. The solution to this dilemma is a 
different configuration of high-efficiency controller that can 
operate with an older-style center-tapped high-inductance 

stepper motor. This paper describes the design of such a 
controller and its intelligent interface to an external control 
system. It was commissioned by General Atomics to replace 
failing stepper-motor drive systems on radio-frequency 
transmission-line tuners for the high power Fast Wave 
equipment on DIIID. 

II. BACKGROUND 
The modern approach to high-efficiency stepper motor 

drive systems is a switch mode H-bridge driver configuration 
feeding a two-winding, four-wire motor. However, there are 
a great many systems in the field still equipped with low-
efficiency resistive drivers and center-tapped two winding, 6-
wire motors. Converting the older-style driver requires the 
use of excessively high voltage H-bridge to overcome the 
winding inductance of the motor. The solution to this 
dilemma is a different configuration of high-efficiency 
controller that can operate with an older-style center-tapped 
high-inductance stepper motor. This paper describes the 
design of such a controller and its intelligent interface to an 
external control system. It was commissioned by General 
Atomics to replace failing stepper-motor drive systems on 
radio-frequency transmission-line tuners for the high power 
Fast Wave equipment on DIIID. 

The conversion of an older style center-tapped motor 
system to a modern high-efficiency controller has several 
challenges: 

• The older motor winding inductance is high, requiring 
hazardous drive voltages if driven by an H-bridge 
controller. 

• There are few high-efficiency switching controllers 
available for center-tapped motors. 

• There is considerable expense and effort in replacing 
both motor and controller. 

• The computer programs or hardware that calculate the 
inputs to the motor driver system may need to be 
redesigned or re-written for a different 
communications protocol. 

It is possible to modify the design of an H-bridge 
switching controller once the current paths of the motor and 
controller are understood. The modern H-bridge controller 
uses one of several current-control techniques to switch and 
maintain winding current at design value. When a motor step 
is desired, the bridge controller turns on opposite pairs of 
transistors or switch devices to place the entire power supply 
across the motor winding. The winding current builds rapidly 
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due to the relatively high voltage and the motor inductance. 
A current sensor then detects when the winding current 
reaches design value. When detected, the drive voltage is 
switched off and an idling circuit is placed around the 
winding. The idling circuit recirculates the winding current 
which decays slowly due to winding losses. When the 
winding current has decayed a small value, the controller 
recharges the current by again switching the same opposite 
pair of transistors on for a brief period of time. Control 
system designs differ in the aspects of current sensing, 
switching and timing. One of the simpler and more 
successful designs is implemented in the National 
Semiconductor LMD18200 series of controller ICs [1]. The 
datasheet also contains an excellent description of its 
operation, and can be used as background for the following 
discussion. 

 

  
 
 
Some points to consider: 
• A 4-wire motor winding is driven end-to-end and 

reversed for stepping while a center-tapped 6-wire 
motor is unidirectionally driven by half-winding. 

• The 6-wire motor’s undriven half-winding must not 
be loaded or the motor torque will be reduced. 

• The 6-wire motor’s undriven half-winding end will 
rise to twice the power supply voltage. It is a coupled 
transformer. 

• Current recirculation is achieved in a 4-wire motor 
controller by turning on upper or lower pairs. 
Recirculation can also be achieved for a center-
tapped motor by appropriate isolating diodes and 
switching devices. 

• It is common to double-drive the motor windings for 
smoother torque. Both windings are active 
simultaneously. 

 
The following diagrams show one of the 2 windings in 

both types of motors. Current flow is shown in red. There are 
two phases to a high-efficiency driver: current drive and 
recirculate. 

 
 

 

The controller transitions to recirculate mode as shown in 
Figs. 5 and 6 when the winding current reaches design value. 
This is accomplished by turning OFF the switches that 
connect to the V+, V- power supply and turning ON switches 
that create a current loop around the motor. The inductance 
of the motor sustains the current.  

 
 

 

 

To take a step, the motor winding current is reversed on 
one of the windings for the 4-wire configuration, and 
swapped to the other half of the center-tapped winding for 
the 6-wire configuration. The switches are driven in a mirror 
image of Figures 3, 4, 5 and 6.  

Figure 7 shows a simplified circuit that implements the 
switching and current paths of Figures 4 and 6. Note that it 
appears similar to a conventional H-bridge except that the 
current path through the upper switch S1 is reversed. This is 
accomplished with an isolating Shottky diode for low loss. 
Note that there is no longer a direct active semiconductor 
path across the V+ and V- power supply. This increases 
reliability as the possibility of destructive current flow is 
reduced should the drivers misbehave. 

Fig. 1. Modern 4-wire motor              Fig. 2. Older 6-wire motor 
 

Fig. 3.  Modern 4-wire motor, 
current drive mode. S1 and S4 
ON, S2 and S3 OFF.                

 

Fig. 4.  Older 6-wire motor, 
current drive mode. S4 ON, 
S1, S2 and S3 OFF.               
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Fig. 5.  Modern 4-wire motor, 
recirculate mode. S2 and S4 
ON, S1 and S3 OFF.                

 

Fig. 6.  Older 6-wire motor, 
recirculate mode. S3 ON, S1, 
S2 and S4 OFF.               

 



 
 

The upper FET needs a bias voltage raised above the V+ 
power supply for proper operation. The undriven motor 
winding rises to 2x the V+ power supply as a consequence of 
the switching current regulator. Small Shottky rectifiers and 
a simple Zener regulator supply the needed bias voltage for 
the upper FETs from the motor winding ends. 

III. CURRENT SENSING AND CONTROL LOGIC 
The current sensor located in the return to the motor 

power supply detects that driven motor current has reached 
design value.  This event triggers the FET switch drive logic 
to  change over from current drive mode to recirculate mode. 
The logic implements a fixed-off-time algorithm that 
estimates the decay of motor winding current. The logic 
transitions back to the current drive state when the off-time 
expires.  The off-time is typically set to 300- 400 
microseconds. 

An XC95108 CPLD logic device [2] and quad 
comparator implement the switching logic and current sense. 
The FET gate drivers are implemented with discrete 
components. A complementary NPN-PNP pair provide 
sufficient drive current to overcome the FET gate 
capacitance in about 50-100 nanoseconds. All of the above 
circuits are implemented on a printed-circuit board and 
packaged in a single 12 x 18cm enclosure. The enclosure 
serves as the heat sink for all the power devices. A fan is not 
required as the total power dissipation is just a few watts in 
operation. 

IV. INTELLIGENT CONTROLLER 
The second enclosure houses the intelligent half of the 

system. Its function is to accept commands from an external 
computer system and interpret them into a simple timed step 
and direction stream for the motor controller’s CPLD.  An 
existing specification for the equipment being replaced 
provided a starting point for the intelligent interface. 

The intelligent interface interprets commands received 
from a remote computer system over an RS485 interface, and 
knowing the present position of the stepper motor, calculates 
a number of steps and direction for the stepper motor to 
achieve the desired position. In this case, the intelligent 
controller section was designed to emulate the command set 
of an existing controller. Commands such as “go to position 

absolute”, “go to position relative”, “recalibrate”, “request 
present position” and “request error status” were 
implemented within the General Atomics RF antenna stub-
stretcher tuner system. The original intelligent controller was 
implemented with an 8051 microcontroller and a PC board-
full of peripheral ICs. A modern PIC microcontroller was 
selected that contains all of the required peripherals and more 
on-chip. The PIC16F887 is a 40-pin chip that provides 
enough I/O pins to directly drive a small ASCII liquid-crystal 
display, five user control buttons and all the analog and 
digital I/O required to support the CPLD motor controller 
described above. The PIC16F887 contains flash memory for 
the control program, static RAM for program variables and 
non-volatile memory for storage of setup constants. 

The intelligent controller has three main interfaces: 

• An operator interface for direct control by personnel 
for setup, troubleshooting and manual operation if 
desired 

• A computer interface for receiving calculated stub 
and stretcher motor positions, either RS485 or 
Ethernet 

• An optically-coupled step-and-direction interface 
with the motor driver 

The operator interface is provided by a simple menu-and-
button selection system. The menus are displayed on a 2-line 
by 16-character LCD and the operator makes selections and 
specifies quantities with five buttons. Three of the buttons 
are positioned beneath the LCD display and are labeled 
dynamically by the running control program within the PIC 
processor. Two buttons are positioned to the right of the 
display and are primarily used by the operator to make 
numeric choices. 

The menu-based operator interface allows the operator to 
set up the controller for a specific stub or stretcher unit 
without recompiling the internal control program. Specifics 
such as the RS485 address or maximum allowable motor 
position are set in this manner. The setup specifics are stored 
in non-volatile memory within the microcontroller and are 
automatically restored at power-up. The operator can also 
send the stepper motor to its inner and outer limits for 
electromechanical setup, cause a recalibrate command to 
synchronize the controller with the mechanical end-stops, 
step the motor a small amount in either direction or send the 
motor to a specified position.  

The computer interface section of the intelligent 
controller program was written to follow an existing bit-
frame-based specification. Each command has a set number 
of bytes that varies with the command, followed by a check 
byte. An “on-the-fly” state machine interpreter parses the 
incoming command stream into its command, data and check 
bytes. The command is executed upon correct reception of 
the check byte. 

The motor controller interface consists of four 
optocouplers, one each for a step pulse, direction control, run 
current set and accelerate current set. The step pulse is a 
timed stream of short pulses, one for each requested step of 

Fig. 7. Simplified ½-bridge circuit, for 6-wire motor 
 



the motor. The direction bit is high for CW rotation, low for 
CCW rotation. The default motor current is holding current 
and is set at about ½ of rated winding current. This is 
sufficient to restrain the stepper motor from being 
mechanically back-driven by the weight of the drive 
mechanism. Motor dissipation is extremely low in this state. 
The motor current is raised to the rated running current when 
the “Run” signal is activated. This is the manufacturer’s 
rated operating current for smoothest operation of the motor 
and rated temperature rise. The motor current is raised 
somewhat over ratings briefly when the “Accelerate” signal 
is activated. This is intended to overcome the sticky-friction 
of the drive mechanism when the motor has been idle for an 
extended period of time. 

 

Acceleration is programmed into the intelligent controller 
to obtain the fastest available travel time given the mass of 
the motor rotor and drive mechanism without skipping steps 
at startup. The step rate starts out slow and advances to a 
more rapid rate. Deceleration is also employed as the motor 
nears its final position. This allows the motor to be stopped 
quickly without over-running its destination position. 

V. ON-CHIP PROGRAM 
The on-chip program that implements the user interface, 

computer interface and motor driver interface is written in a 
2-thread configuration for a PIC16F887 processor [3]. One 
thread is activated upon a fixed-rate interrupt generated by an 
on-chip timer. It is used for time-critical tasks such as motor 
step timing, interfacing with the on-chip serial port, driving 
the LCD display and reacting to mechanical over-travel. The 
other thread occupies the remaining execution time and 
handles such as computing steps and direction, interpreting 
and reacting to commands received from the computer 
interface and running the menu-based operator interface. 

The on-chip program is written directly in the assembler 
language of the PIC processor [4]. Programming directly in 
the Microchip assembler allows complete control of the chip 
and the path of the executing code and is the best choice for 
time-critical applications.  

There is little benefit from including the on-chip 
firmware listing in this paper as it runs to about 100 pages of 
assembler code. There are a few interesting techniques in the 
code that may be of interest to readers when code size goes 
above the 2 kilo-word page boundary of the basic PIC 
architecture. 

A. Handling Interrupts and the 2 kilo-word Page 
Boundary 
In practicality, the address space of the PIC program 

memory is partitioned in 2 kilo-word blocks due to the 
program addressing limit of 11 bits in jump or subroutine 
call instructions. A special register is supplied (PCLATH) to 
allow the programmer to place and access code beyond the 
base 2 kilo-word block. Interrupts, however, complicate the 
issue as the PCLATH register contains the high bits of the 

interrupted code address, and not the location of the interrupt 
service routine. 

One solution is to place a stub interrupt handler in the 
base memory block starting at the interrupt vector location 
(usually 0004). Save W, PCLATH, FSR, STATUS and 
anything else into known data memory locations. Remember 
that the current data memory page is also unknown when 
saving W, so use a common data memory area that appears 
in all data memory blocks. All PIC processors that have 
paged data memory have a common area for this purpose. 
Then set PCLATH to the proper memory block where the 
interrupt routine code resides and jump or call that location. 
At the end of the interrupt routine, set PCLATH back to the 
base memory page and jump or return to the interrupt stub in 
the base page. Restore all saved registers including PCLATH 
and execute the RETFIE (Return from Interrupt) instruction 
to recover the correct pre-interrupt executing code location 
from anywhere in memory [5]. 

B. Placing Code Beyond the 2KWord Page Boundary 
Placing code in the higher regions of the PIC address 

space has aptly been named “jumping into hyperspace” in 
homage to a certain late 1970s science-fiction film. Doing 
this is easiest to accomplish if the main program code does 
not need to leave the base page, and only subroutines need to 
be placed in the upper areas. Point PCLATH to the correct 
page and “call” the relevant routine. The return is 
automatically handled by the PIC, but PCLATH will remain 
pointing to the subroutine’s page. Forgetting this detail will 
cause the running program to jump to the incorrect page if 
another subroutine is called in any page including the base 
page. The results can be spectacular and debugging this error 
is difficult as not even the PIC’s hardware debuggers can 
follow it.  It is best to explicitly force PCLATH to the proper 
subroutine page before each subroutine call. 

VI. CONCLUSIONS 
A design for a high-efficiency driver for older-style 

stepper motors has been presented. An understanding of its 
switching technique may be of interest for similar retrofit 
designs. The original resistive motor driver dissipated more 
than 200 watts continuously and required a fan to cool it. In 
contrast, the new design switching driver dissipates only 
about 10 watts including its power supply and is fanless.  

 An intelligent motor controller based on a modern 
microcontroller has been presented. Design details and 
schematics are available from the author for those interested 
in further information. 
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