

Supported by

Design Description of the Coaxial Helicity Injection (CHI) System on NSTX-U

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

R. Raman, T.R. Jarboe, B.A. Nelson (University of Washington, Seattle, WA)

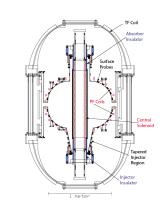
D. Mueller, S.C. Jardin, C. Neumeyer, M. Ono, J.E. Menard (Princeton Plasma Physics Laboratory, Princeton, NJ)

and the NSTX Research Team

This work is supported by US DOE contract numbers FG03-96ER5436, DE-FG02-99ER54519 and DE-AC02-09CH11466

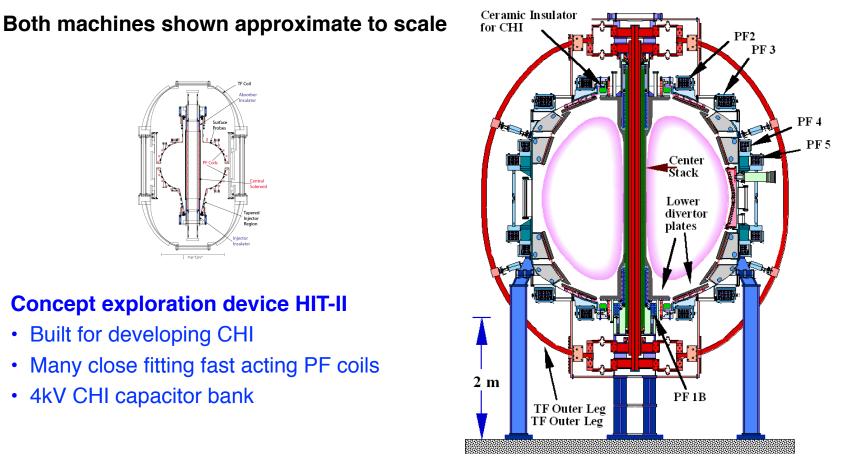
25th Symposium on Fusion Engineering San Francisco, California, June 11-14, 2013

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec


Office of

Science

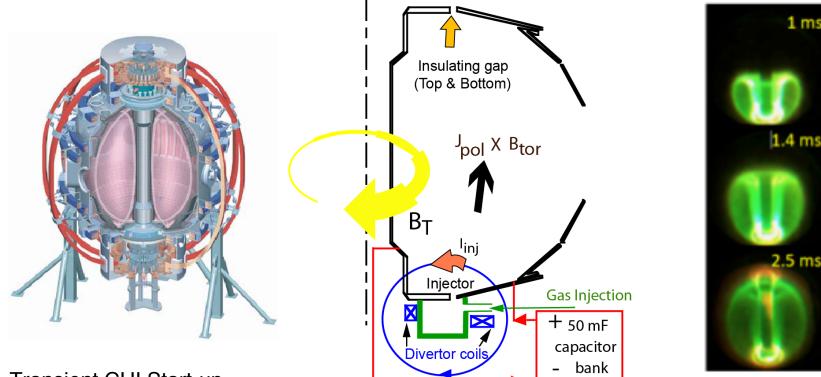
- A FNSF based on the Spherical Torus (ST) concept will have very restricted space for a central solenoid
 - A method for solenoid-free start-up is very likely required
- Eliminating the solenoid also simplifies the tokamak concept
 - Solenoid not needed during steady-state operation
 - Provides greater flexibility in the choice of the aspect ratio
- Transient CHI has generated 200kA of high-quality plasma current in NSTX
 - When induction is applied, the current ramped-up to 1MA, while requiring 35% less inductive flux than a discharge without CHI startup


NSTX and NSTX-U CHI Research Follows Concept Developed in HIT-II

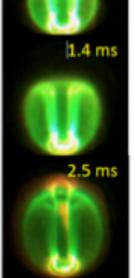
Concept exploration device HIT-II

- Built for developing CHI
- Many close fitting fast acting PF coils
- 4kV CHI capacitor bank

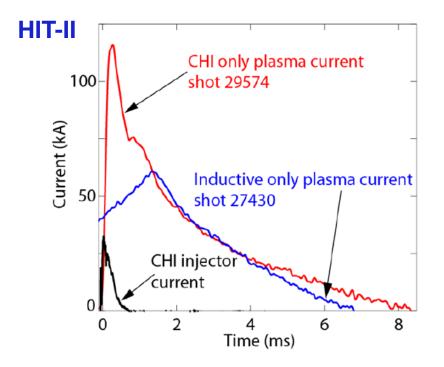
NSTX plasma is ~30 x plasma volume of HIT-II



Proof-of-Principle NSTX device

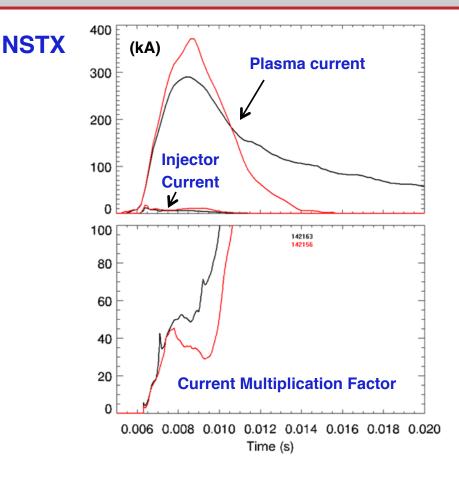

- Built with conventional tokamak components
- Few PF coils
- 1.7kV CHI capacitor bank (2-3kV on NSTX-U)

NSTX-U Will Use Transient CHI For Solenoid-free Plasma Start-up With Subsequent Current Ramp-up Using NBI


- Transient CHI Start-up
 - Generate injector poloidal flux using divertor coils
 - Ensure divertor flux footprints are narrow
 - Inject 2 Torr.L of D2 below divertor plate gap
 - Discharge 25-50mF capacitor bank (2 kV)
 - Injected current rapidly decays
 - Toroidal plasma currents remains on closed flux surfaces

Fast camera: F. Scotti, L. Roguemore, R. Magueda

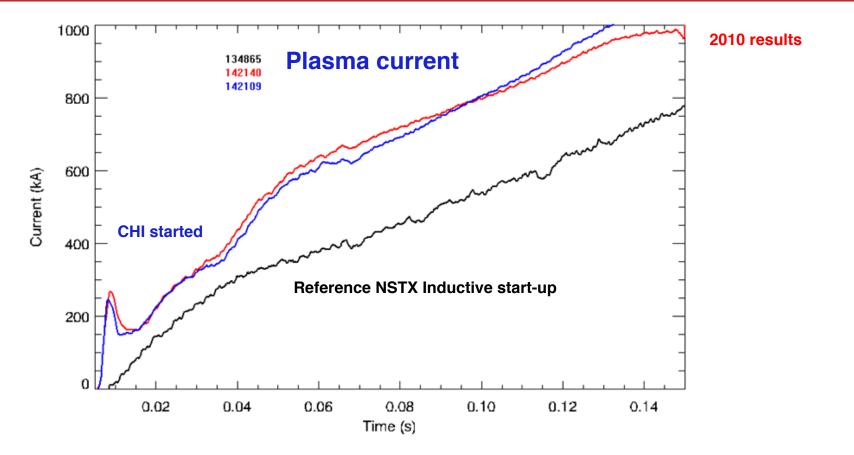
CHI for an ST: T.R. Jarboe, Fusion Technology, 15 (1989) 7 Transient CHI: R. Raman, T.R. Jarboe, B.A. Nelson, et al., PRL 90, (2003) 075005-1


Very High Current Multiplication (Over 70 in NSTX) Aided by Higher Toroidal Flux

-30kA of injector current generates 120kA of plasma current

-Best current multiplication factor is 6-7

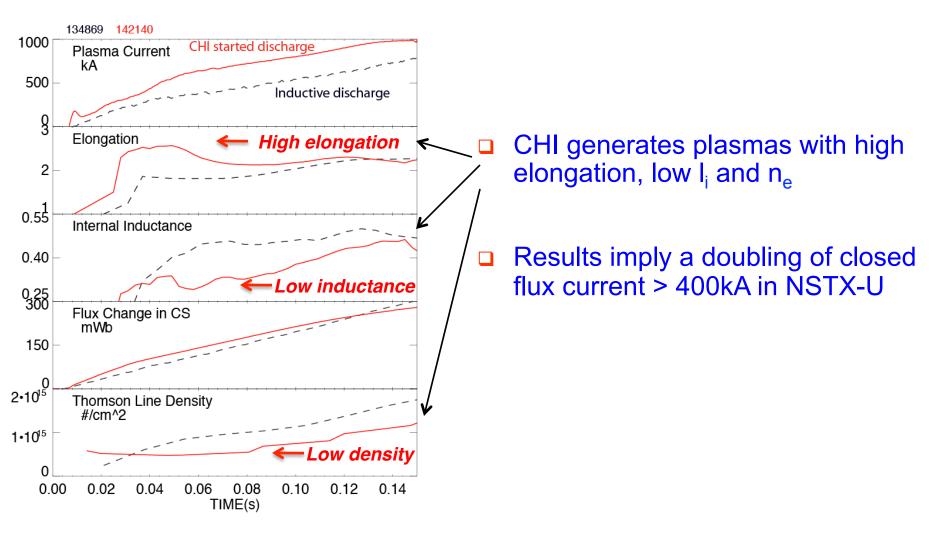
-Current multiplication factor in NSTX is 10 times greater than that in HIT-II



- Over 200kA of current persists after CHI is turned off

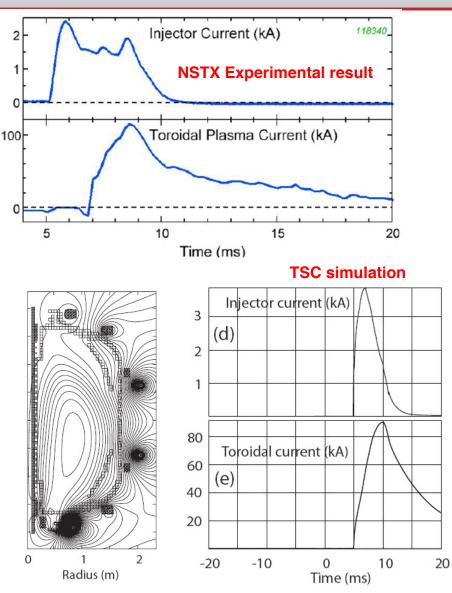
R. Raman, B.A. Nelson, D. Mueller, et al., PRL 97, (2006) 17002

Standard L-mode NSTX Discharge Ramps to 1MA Using 50% More Inductive Flux than a CHI Started Discharge



Reference Inductive discharge:Uses 396mWb to get to 1MACHI started discharge:Uses 258 mWb to get to 1MA (53% less flux)NSTX inductive start-up:138mWb flux typically generates 400kA of plasma currentBest CHI-startup discharges:138mWb flux generated 650kA

() NSTX

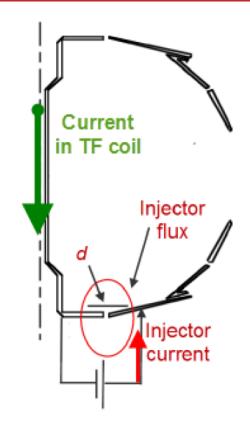

Plasma discharge ramping to 1MA requires 35% less inductive flux when coaxial helicity injection (CHI) is used

CHI assisted startup in NSTX

TSC Simulations are being used to Understand CHI-Scaling with Machine Size (NSTX)

(D) NSTX

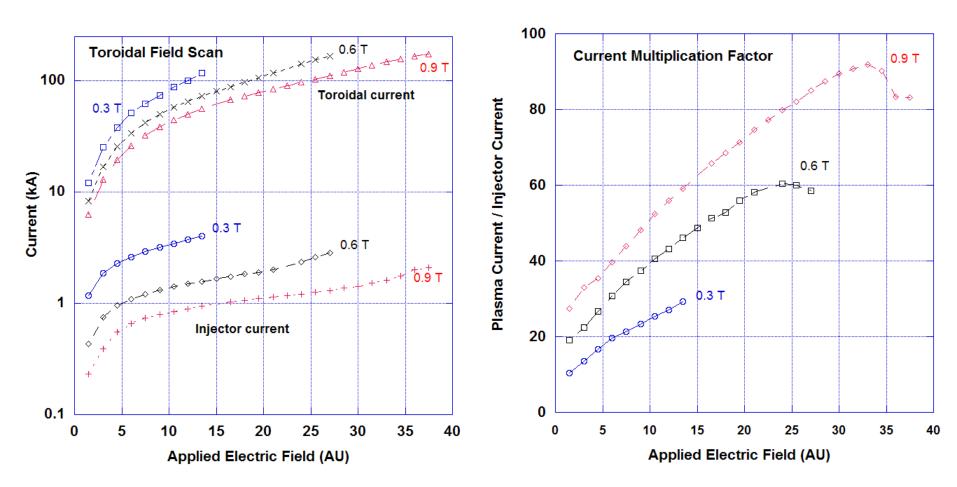
- Time-dependent, free-boundary, predictive equilibrium and transport
- Solves MHD/Maxwell's equations coupled to transport and Ohm's law
- Requires as input:
 - Device hardware geometry
 - Coil electrical characteristics
 - Assumptions concerning discharge characteristics
- Models evolutions of free-boundary axisymmetric toroidal plasma on the resistive and energy confinement time scales.
- NSTX vacuum vessel modeled as a metallic structure with poloidal breaks
 - An electric potential is applied across the break to generate the desired injector current


Externally Produced Toroidal Field makes CHI much more Efficient in a Lower Aspect Ratio Tokamak

• Bubble burst current*: $I_{inj} = 2\psi_{inj}^2 / (\mu_o^2 d^2 I_{TF})$

 ψ_{inj} = injector flux d = flux foot print width I = current in TE coil

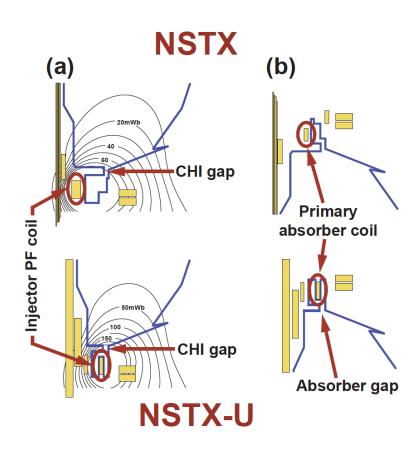
 I_{TF} = current in TF coil

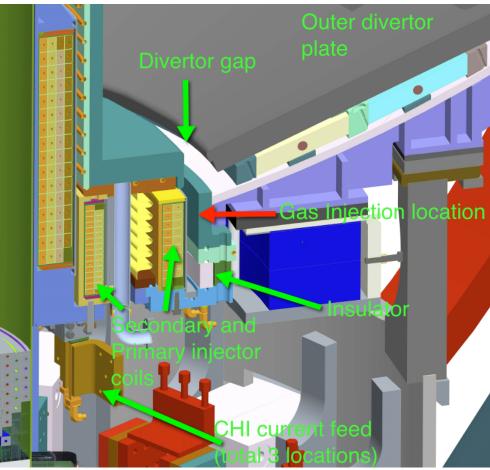

- Current multiplication increases with toroidal field
 - Favorable scaling with machine size
 - Increases efficiency (10 Amps/Joule in NSTX)
 - Smaller injector current to minimize electrode interaction

^{*} T.R. Jarboe, Fusion Tech. 15, 7 (1989)

TSC Simulations Show Increasing Current Multiplication as TF is Increased

- Observed current multiplication factors similar to observations in NSTX
 - Higher toroidal field important as it reduces injector current requirement

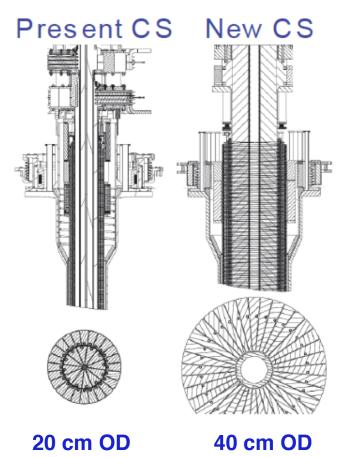

R. Raman, S.C. Jardin, J. Menard, T.R. Jarboe et al., Nuclear Fusion 51, 113018 (2011)



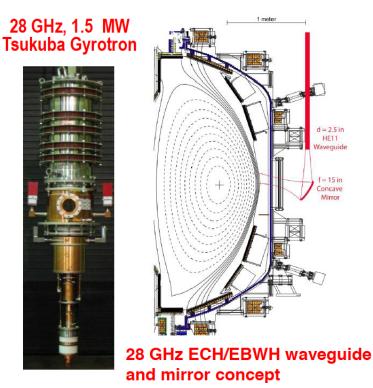
NSTX-U Upgrades that Facilitate CHI Start-up

NSTX-U Machine Enhancements for CHI

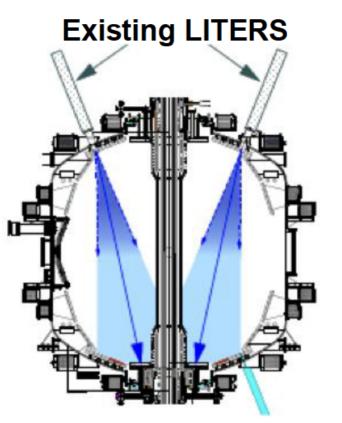
- > 2.5 x Injector Flux in NSTX (proportional to I_p)
- Absorber coil much better positioned to suppress spurious arcs

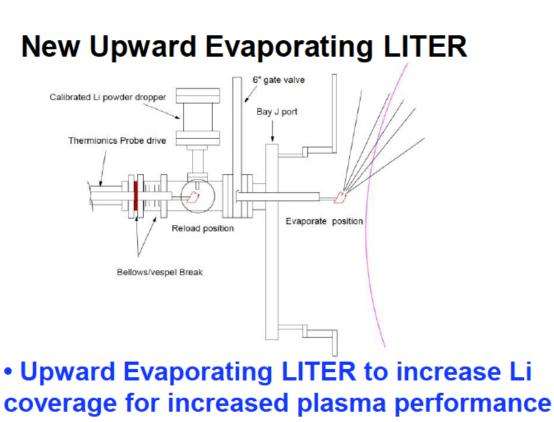


Increased TF and ECH Beneficial for Increasing Electron Temperature in CHI-Started Discharges

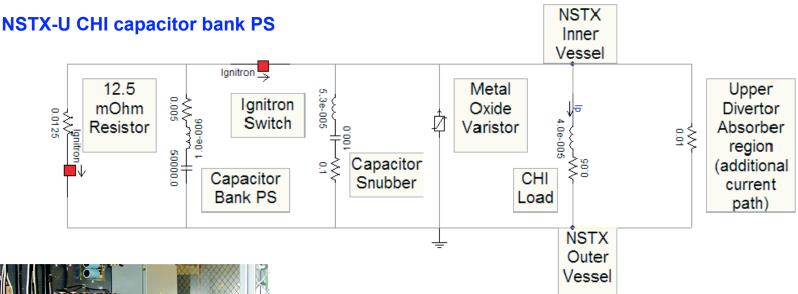

TF increased to 1T (0.55 T in NSTX)

 Increases current multiplication factor defined as plasma current/capacitor bank current (facilitated by larger center stack)

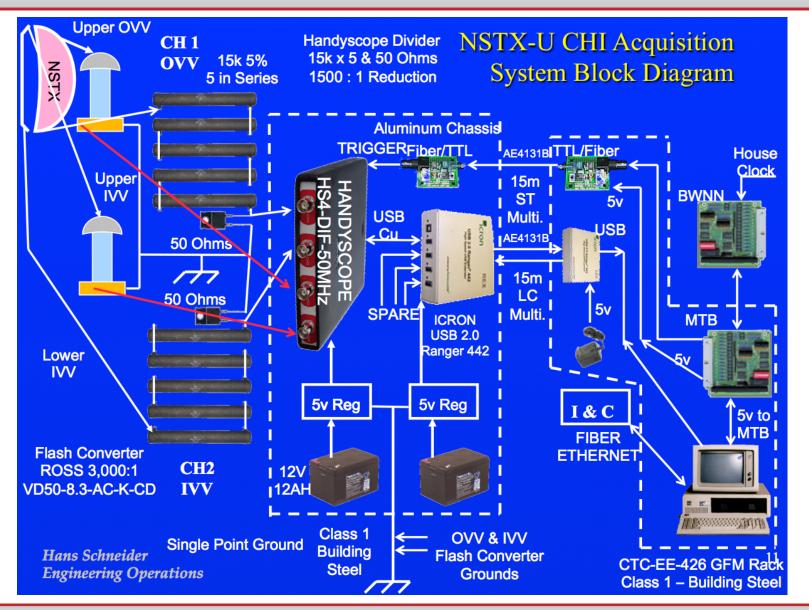

28 GHz (1 MW) ECH system


 Will increase electron temperature

Increased Li Coverage of Vessel to Reduce Low-Z Impurities



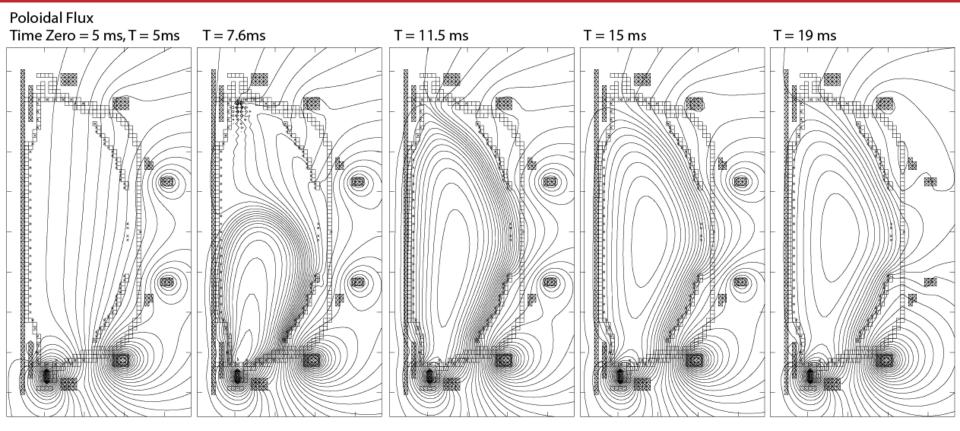
Metal divertor plates and Cryo Pump Upgrades (post FY2016) Will allow CHI plasma temperature to increase as a result of reduced low-Z impurity influx and plasma density pump-out


2-3kV Capacitor Bank Upgrades Allow Injection of More Poloidal Flux into NSTX-U (Injector Flux is Proportional to Ip)

- 50mF, 2.0 kV capacitor bank (5mF x 10): 100kJ
- Present plans to upgrade to 3kV capacitors in FY2017 to allow capability to inject more poloidal injector flux
- Fast crowbar system to interrupt injector current
- Three, variable capacitance, and individually triggered modules to shape injector voltage waveform
- Programmable thyristor power supply (2kV, 50kA) also available to support steady-state type CHI discharges

Dual 1 MHz Vessel Voltage Monitors based on Ross Voltage Monitors and Resistive Dividers (H. Schneider)

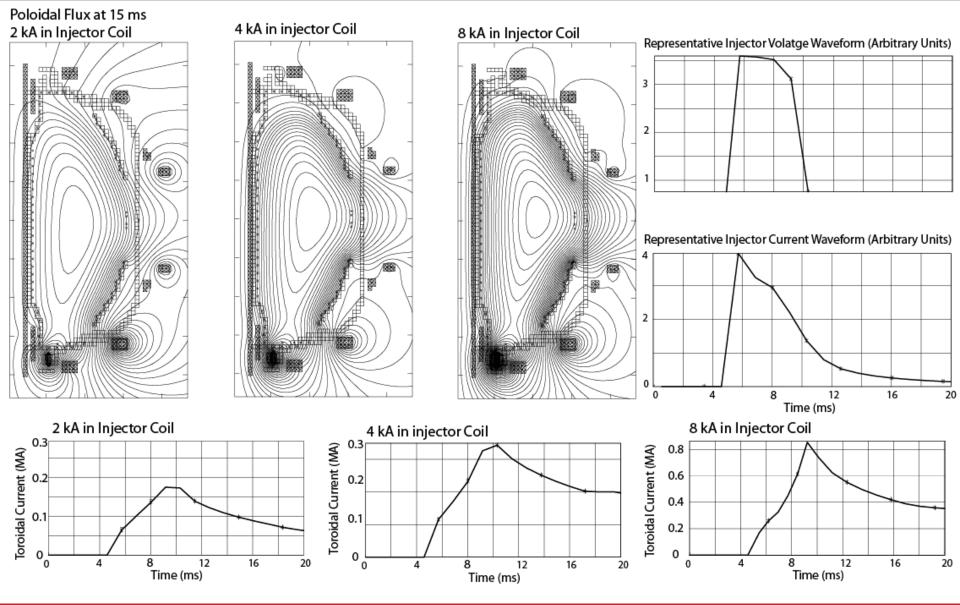
🔘 NSTX


CHI Injector and Absorber Poloidal Field Coil Parameters (NSTX and NSTX-U)

Coil	R (cm)	# Tur ns	L (mH)	R (mΩ)	kA- Turns (min)	kA- Turns (max)	kA.Turns/ms and Voltage (kV)
NSTX							
PFAB1	43.06	48	3.93	129.7	-48	48	+/- 4.8 [1 kV]
PFAB2	63.18	48	6.46	190.2	-48	48	+/- 4.8 [1 kV]
PF1B	30.5	32	0.673	3.15	0	+320	+19 [2 kV]
PF2L	80	28	1.98	7.32	-560	+560	+/- 25.3 [2 kV]
NSTX-U							
PF1AU,L	32.4	64	2.03	8.93	-460	1172	56.2 [2 kV]
PF1BU,L	40.4	32	1.14	9.19	-192	416	+45.8 [2 kV]
PF1CU,L	55.05	20	0.72	4.49	-100	318	+41.1 [2 kV]
PF2L	80	28	1.98	7.32	-308	420	+25.3 [2 kV]

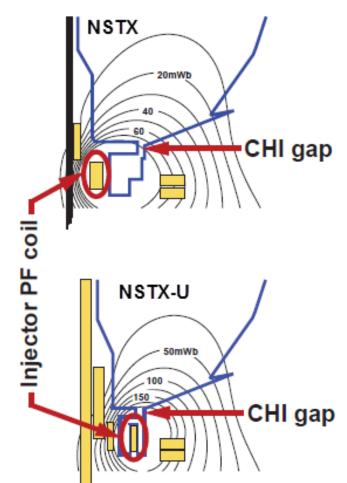
Injector coil is positioned much closer to CHI gap (R = 57-61.6 cm) in NSTX-U Absorber buffer coils have much higher current slew rates

Initial CHI Start-up Scenario in NSTX-U (TSC Simulations in NSTX-U Geometry – Static Coil Currents)



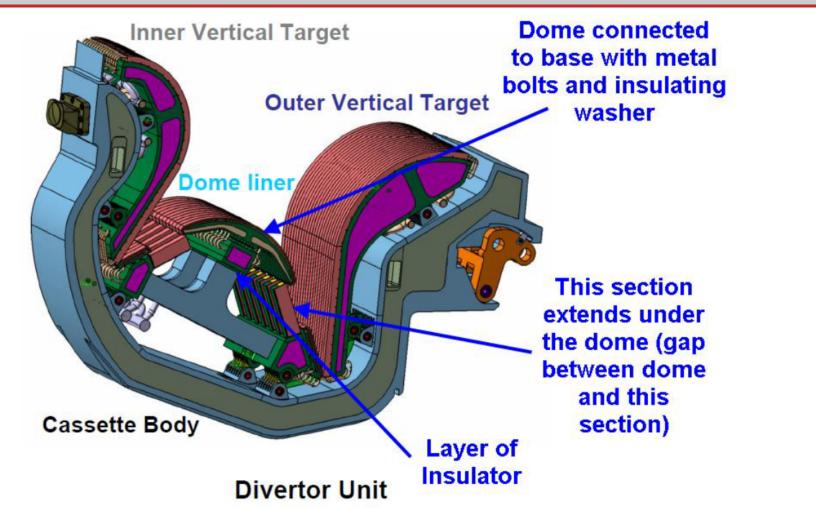
- Initial Transient CHI discharges in NSTX-U will start with low levels of current in the Primary PF1CL injector coil

- CHI discharge will be grown into a magnetic well suitable for the final CHI plasma equilibrium
- Poloidal flux evolution (shown above) is for for constant (in time) coil current values of:
 - PF1CL (2 kA, Max available 15 kA), PF1AL (-0.4 kA), PF2L (-0.35 kA), PF3L (-0.5 kA),
 - PF5 (-0.15 kA), PF3U (-0.07 kA), and Zero current in the other coils
 - Absorber arc suppression may require low levels of current in the PF1CU coil



CHI Produced Toroidal Current Increases with Increasing Levels of Current in the CHI Injector Coil (NSTX-U)

CHI Start-up to ~0.4MA is Projected for NSTX-U, and Projects to ~20% Start-up Current in Next-step STs



Parameters	NSTX	NSTX-U	ST-FNSF
Major Radius [m]	0.86	0.93	1.2
Minor Radius [m]	0.66	0.62	0.80
Β _τ [T]	0.55	1.0	2.2
Toroidal Flux [Wb]	2.5	3.9	15.8
Plasma current [MA]	1	2	10
Projected Start-up Current (MA)	0.2	0.4	2.0
Poloidal Flux (Wb)	0.04	0.08	0.53
Injector Flux [Wb]	0.047	0.1	0.66

•Injector flux in NSTX-U is ~ 2.5 times higher than in NSTX \rightarrow supports increased CHI current

6	0	NST	ΓX
Q	ע	1101	~

Example of CHI Insulator Installation in a Reactor (In ITER, the Dome Region would be Insulated from the Vessel)

Insulator is under compression and shielded from neutron

(Concept is similar to the biased ring electrode on DIII-D, but because of the short pulse length, and because of the lack of a pre-existing plasma, the requirements on the insulator are considerably less demanding than on DIII-D)

(III) NSTX

June 4-7,2013

- Insulator Resistance > 1 Ohm
- Resistance to be maintained only during the plasma start-up phase (<30 ms in duration)
- The actual high-voltage phase < plasma start-up phase
- During the plasma start-up phase, there is no pre-existing plasma that can short out the insulator (and CHI current path is controlled by pre-programmed vacuum field line pattern)
- After the high-voltage phase, insulator could be shorted-out, if necessary

Because the Required Insulator Resistance is very low (few times the plasma impedance) other possibilities exist

- Layers of thin resistive metal coated with insulating layers
- Powdered, weakly bonded, insulator sandwiched between two metal plates
- The HIT-Si device used an insulator spray to achieve insulation *in a plasma environment* in an more complicated vessel geometry
- Other possibilities (including conventional insulator technology currently planned for next step machines to insulate PF coils and other components)
- Insulator could be hidden behind metallic structure as on NSTX-U

NSTX-U will Develop Full Non-inductive Start-up and Current Ramp-up in support of FNSF and next step Tokamaks

- 0.3MA current generation in NSTX validates capability of CHI for high current generation in a ST (>400 kA projected for NSTX-U)
- TSC Simulations for NSTX-U geometry suggest Transient CHI start-up may be more efficient due to improved injector coil positioning
- Successful coupling of CHI started discharges to inductive ramp-up & transition to an H-mode in NSTX demonstrates compatibility with highperformance plasma operation
- CHI start-up has produced the type of plasmas required for non-inductive ramp-up and sustainment (low internal inductance, low density)
- Favorable scaling with increasing machine size (from two machines of vastly different size, HIT-II and NSTX and in TSC simulations)
- NSTX-U is well equipped with new capabilities to study full non-inductive start-up and current ramp-up

- 2x Higher TF, 1MW ECH, Second Tangential NBI for CD, 2x higher CHI voltage, >2.5x more injector flux, Improved upper divertor coils

