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TST-2 spherical tokamak

Plasma Parameters

Bt  0.21T

R ~ 0.38m
a ~ 0.25m
A > 1.5 
κ 1.2~1.8

Ip < 120kA
tdischarge 20ms

ne ~ 1019m-3

Ti 50-100eV
Te 400eV 

(from preliminary
                              PHA measurement)



Equilibrium reconstruction shows
 βT = 5.7% (βN = 2.7);  W = 610 J (τE = 3 ms)
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Ion temperature increase during a strong reconnection
event
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Motivation

Electron temperature diagnostics in ST
� overdense (ωpe  >> Ωce)

� Electron cyclotron emission is not possible

Electron Bernstein wave (EBW)

� can propagate in overdense plasmas

� High optical thickness Å@Ålocal (and fast) Te measurement

� electrostatic wave (mode-conversion is required)

So far, two mode conversion (MC) scenarios are proposed

� EBW-SX-O scenario

� EBW-SX-FX scenario

Is it possible to obtain Te from EBW ?

Simultaneous measurement of EBW emission and MC efficiency is necessary



Location of critical layers

• Critical layers exist in the plasma edge region within several cm.
• ~100% MC can be expected if optimum density gradient is realized.
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Radio-reflectometer

• Radiometer
– Heterodyne detection
– frequency range (5-12GHz)
– IF bandwidth100MHz
– absolutely calibrated with liquid

nitrogen
– k//=0

• Reflectometer
– Amuplitude Modulation
– IF frequency 150MHz
– frequency range 5-12GHz

Simultaneous measurement
Trad

density gradient at UHR
Direct measurement

MC efficiency by reflectivity
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Distance between the antenna and vacuum window is
important

 to measure EBW-SX-X process emission

• Mockup of vacuum vessel
segment is used to decide the
minimum distance to avoid the
unfavorable emission generated
via EBW-SX-O process.

• The antenna does not receive N//>
0.2 emission, when the distance
is more than 60cm.

Antenna sensitivity on N//
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Example of simultaneous measurement

• Trad from the core region is 100-150eV

• Trad drops at IREÅ@Åno obvious change in group delay

Group delay
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Spatial profiles of ne, Trad and Te (at Ip maximum)

• dne/dxÅ~Å1019[m-4]

• A simple |B| profile of Bt~1/R and BpÅ a is assumed to map the
radiometer frequency to the spatial location.



Comparison between MC efficiency and reflectivity

Reflectivity= (reflected power with plasma)/(reflected power with Al plate on the window)

MC efficiency is calculated by full-wave code using the measured density profile



Te obtained from fundamental and 2nd harmonic emission

• MC efficiency is estimated from the reflectivity.

• Te profile is symmetric about the magnetic axis.



Overlap of cyclotron harmonics are clearly observed
by the scanning measurement

• Since ωc emission comes from the core region and 2ωc emission comes from the
peripheral region, the EBW intensity changes clearly at the overlap frequency.

• 3 overlap frequencies can be identified between 5-12GHz, although the changes of
EBW intensity become small at higher frequency.

 EBW emission profile by 10kHz frequency scan



Conclusions

• Te diagnostic of overdense plasmas
– an alternative to ECE diagnostic
– X-mode emission mode-converted from EBW

• Radio-reflectometer
– simultaneously measures of Trad and ne profile around UHR
– possible direct measurement of MC efficiency from reflectivity

• 5-12GHz Radio-reflectometer is installed on TST-2 spherical tokamak
– the fundamental to 3rd harmonic emission coverage.
– mode-conversion region located within 1~2cm from plasma edge
– dne/dx ~ 1019[m-4]
– Trad~ 100-150eV  and Te around 200eV from the core region
– Good consistency between MC efficiency and the reflectivity

• Fast scanning VCO is introduced recently
– Frequency coverage is extended to 5-16GHz
– Overlaps of cyclotron harmonics are clearly observed from the scanning profile

measurements


