

NSTX Contributions in the USDOE FESAC Fusion Energy Development Plan

Martin Peng

Oak Ridge National Laboratory @ Princeton Plasma Physics Laboratory

For the NSTX National Team

The Spherical Tokamak Workshop 2003

Culham Science Center, Abingdon, U.K. September 15 – 17, 2003

Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI SNL UC Davis **UC** Irvine **UCLA** UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokyo **JAERI** loffe Inst TRINITI KBSI KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching **U** Quebec

ST Research Offers Exciting Opportunities to Expand Plasma Science & Provide Attractive Next Steps

- FESAC Proposes Fusion Development Plan
- ST research in plasma science for energy development in this plan
- Physics contributions from present experiments
- Additional contributions needed at the 5 10 MA level
- NSTX 5-year plan to carry out this exciting research

FESAC Panel Articulates Key Components Needed for Developing Net Fusion Electricity in 35 Years

("A Plan for the Development of Fusion Energy," final report to FESAC, March 5, 2003)

Spherical Torus Is an Integral Part of the Development Plan

Spherical Torus Offers High β Plasmas with Strong Toroidicity & High Safety Factor ($q_{edge} \sim 10$)

Spherical Torus provides Scientifically Interesting plasmas

Extended Physics parameter space available for plasma science:

- High β_T (≤ 40%) & central β_0 (~100%)
- Strong plasma shaping & self fields (A≥1.27, κ≤2.5, B_p/B_t~1, q_{edge}~10)
- Small plasma size relative to gyro-radius (a/p_i~30–50)
- Large mirror in core & edge B field $(f_T \rightarrow 1)$
- Large plasma flow (M_A=V_{rotation}/V_A \leq 0.3)
- Large flow shearing rate ($\gamma_{ExB} \le 10^6/s$)
- Supra-Alfvénic fast ions (V_{fast}/V_A~4–5)
- High dielectric constant ($\epsilon = \omega_{pe}^2 / \omega_{ce}^2 \sim 50$)

ST Research Studies the Expanded Physics Basis to Optimize Future Steps in This Plan

\bigcirc	NSTX	
------------	------	--

Plasma Science of Expanded Parameter Space		Optimized Toroidal Fusion Steps
1) Solenoid-free Startup	⇒	Simplified design, reduced operating cost
2) Reduced turbulence	⇒	Smaller unit size for sustained fusion burn
3) Stable high $\beta_T \& \beta_0$	⇒	Lowered magnetic field and device costs
4) Effective wave-energetic particle-plasma interaction	⇒	Efficient fusion α particle, neutral beam, & RF heating
5) Dispersed plasma fluxes	⇒	Survivable plasma facing components
6) Attractive sustained burning plasma properties	⇒	Steady state fusion power source

ST May Lead to Cost-Effective Steps to Fusion Energy

Device	NS	ТХ	NSST		CTF		DEMO	
Mission	Proof of	Principle	Performance Extension		Energy Development, Component Testing		Practicality of Fusion Electricity	
R (m)	0.8	85	1.5		~1.2		~3.4	
a (m)	0.0	65	0.9		~0.8		~2.4	
κ, δ	2.5,	0.8	2.7,	0.6	.6 ~3, ~0.4		~3.2, ~0.5	
I _p (MA)	1.5	1	10	5	~11		~30	
B _T (T)	0.6	0.3	2.6	1.1	~2.2		~1.8	
Pulse (s)	1	5	5	50	Steady state		Steady state	
P _{fusion} (MW)	-	-	50	10	~70 ~280		~3000	
W_L (MW/m ²)	-	-	-		~1	~4	~4	
TF coil	Multi	-turn	Multi-turn		Single-turn		Single-turn	

8th Int ST Wksp, 9/15-17/03

Physics Basis for ℓ_i , n_G , β 's, & High Rational q Can be Tested at Relevant Levels at ~1 MA

	NSTX	NSST	CTF	DEMO		
Solenoid-free startup						
Internal inductance, ℓ_i 0.5 0.25 - 0.5 ~0.25 ~0.25						
Internal poloidal flux $\propto \ell_i R_0 I_p$ (m-MA)	0.43	1.9 – 7.5	~3.6	~10		
Poloidal field energy $\propto \ell_i R_0 I_p^2$ (m-MA ²)	0.43	9.4 – 75	~43	~150		
Stable high β's						
Nominal Greenwald density, n _G	~0.5	~0.5	~0.5	~0.6		
Beta normal, β_N	≤8	8-4	4 - 8	~8		
Average toroidal beta, β_T	0.2 - 0.4	0.4 - 0.2	0.2 - 0.4	~0.5		
Beta gradient, β_T' (/m)	0.25 - 0.5	0.26 - 0.13	0.13 - 0.26	~0.06		
Aligned bootstrap current fraction, f_{BS}	0.7	0.8 - 0.2	0.5 - 0.8	~0.9		
Resonant field errors / B _T (%)	~ 0.1	~ 0.03	~ 0.01	< 0.01		
Rational q values in plasma	≥1-3	≥ 1 – 3	> 2 - 3	> 3		

Physics Basis for Poloidal Flux & Energy, Bootstrap Current, & Error Fields Will Require Larger Progress

Physics Basis for Collisionality, Ion $\tau_{\rm E}$, M_{Alfvén}, & Flow Shear Can be Tested at Relevant Levels

	NSTX	NSST	CTF	DEMO		
Reduced turbulence & improved confinement						
Average temperature (keV)	~1	4 – 8	~10	~20		
Average collisionality, v*	0.05 - 0.2	0.03	~0.02	~0.02		
Thermal ion minor radius, a/ρ_i	40	80 - 120	~100	~150		
Ion confinement neoclassical factor, H _{Neoc}	~1	~1	~1	~1		
Electron confinement H-mode factor, H_{98e}	~0.7	~1	~1	~1		
Alfvén Mach number, $M_A = V_{Plasma} / V_{Alfvén}$	0.3	~0.3	~0.3	~0.1		
Flow shearing rate $(10^{5}/s)$	1 – 10	1 – 10	1 – 10	0.3 – 3		

Physics Basis for High Temperature, Normalized Radius, & Electron $\tau_{\rm E}$ Will Require Larger Progress

Physics Basis for High $\omega_{pe}^2/\omega_{ce}^2$, Normalized Fast Ion Radius & Velocity Can be Tested at Relevant Levels

	NSTX	NSST	CTF	DEMO	
Effective heating and sustainment					
$\omega_{\rm pe}^2/\omega_{\rm ce}^2$	50	50 - 20	~ 20	~ 25	
Beam ion minor radius, a/ρ_{Beam}	5	15 – 22	~ 22	~ 34	
Fusion α minor radius, a/ρ_{α}	_	N/A – 6	~ 6	~ 14	
$V_{Beam}/V_{Alfvén}$	4	1	~ 1	~ 1	
$V_{\alpha}/V_{Alfvén}$	_	N/A – 4	~ 4.5	~ 5	
Dispersed plasma fluxes					
$P/R (MW/m), f_{rad} = 0.5$	8	13 – 20	20 - 40	87	
Integrated attractive operations					
$\tau_{pulse}^{}/\tau_{skin}^{}$	~ 3	~ 10 - 0.5	$\rightarrow \infty$	$\rightarrow \infty$	

Physics Basis for High Heat Flux & Integrated Steady State Operations Will Require Larger Progress

Proposed 5-Year Research Aims to Demonstrate Long Pulse, High Performance Plasma Operations

5-year goals

- Determine attractiveness
- Establish science basis for extrapolable high performance and long pulse
- Database for next PE step (NSST), and in turn for CTF & DEMO

Supporting

- Implement new key diagnostics
- Advance control tools
 & facility upgrades
- Carry out theory, analyses & modeling

Exciting Diagnostic and Facility Upgrades are Proposed to Support Research

Diagnostics	Facility			
MHD	Very High β			
 – EBW radiometer, fast ∆T_e – MSE/CIF, LIF polarimeter [Nova] 	 Ex-vessel field and mode control coils [CU] 			
Transport & Turbulence	- Modification of PF1A (k=2.6, δ =0.6)			
 High & low-k µ-wave scattering 	 Active mode control systems [CU] 			
[UCLA, UCD]	CD, MHD, Integrated Scenarios			
 μ-wave imaging reflectometer [UCD] 	- EBW (1 \rightarrow 4 MW source power) [VLT,			
- GPI - Planar LIF edge fluctuations [C-	MIT, ORNL]			
Mod, DIII-D, Nova, PSI, SBIR]	Startup			
Edge & Divertor	– EBW			
 Divertor laser Thomson scattering 	 CHI absorber control coils 			
Astrophysics & Diagnostic	 Outboard PF-only induction 			
Development	Particle & Edge Plasma Control			
 X-ray imaging crystal spectrometer 	– Cryopumps			
[LLINL, Chandra, C-mod, KSTAR, Adv. Diagnostics Program]	 Lithium pellets, coating, flowing surface module [VLT-PFC, CDX-U] 			

NSTX-FESAC-plan

8th Int ST Wksp, 9/15-17/03

Worldwide Collaboration is a Hallmark of ST Research

ST Research Offers Exciting Opportunities to Expand Plasma Science & Provide Attractive Next Steps

- FESAC of USDOE articulated a plan to deliver net fusion electricity in 35 years, in which ST is integral part
- ST research studies an expanded physics basis to optimize future steps in this plan: NSST, CTF
- Physics basis for many key topics can be tested in present ST experiments
- Physics basis for additional key topics will require tests at the 5 – 10 MA level
- The NSTX national team is part of worldwide ST community to carry out this exciting research

NSTX National Team & Contributors

M.G. Bell, R.E. Bell, T. Bigelow, M. Bitter, W. Blanchard, J. Boedo, C. Bourdelle, C. Bush, D.S. Darrow, P.C. Efthimion, E.D. Fredrickson, D.A. Gates, M. Gilmore, L.R. Grisham, J.C. Hosea, D.W. Johnson, R. Kaita, S.M. Kaye, S. Kubota, H.W. Kugel, B.P. LeBlanc, K. Lee, R. Maingi, J. Manickam, R. Magueda, E. Mazzucato, S.S. Medley, J. Menard, D. Mueller, B.A. Nelson, C. Neumeyer, M. Ono, H.K. Park, S.F. Paul, Y-K. M. Peng, C.K. Phillips, S. Ramakrishnan, R. Raman, A.L. Roquemore, A. Rosenberg, P.M. Ryan, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, T. Stevenson, D. Stutman, D.W. Swain, G. Taylor, A. Von Halle, J. Wilgen, M. Williams, J.R. Wilson, X. Xu, S.J. Zweben, R. Akers, R.E. Barry, P. Beiersdorfer, J.M. Bialek, B. Blagojevic, P.T. Bonoli, R. Budny, M.D. Carter, J. Chrzanowski, W. Davis, B. Deng, E.J. Doyle, L. Dudek, J. Egedal, R. Ellis, J.R. Ferron, M. Finkenthal, J. Foley, E. Fredd, A. Glasser, T. Gibney, R.J. Goldston, R. Harvey, R.E. Hatcher, R.J. Hawryluk, W. Heidbrink, K.W. Hill, W. Houlberg, T.R. Jarboe, S.C. Jardin, H. Ji, M. Kalish, J. Lawrance, L.L. Lao, K.C. Lee, F.M. Levinton, N.C. Luhmann, R. Majeski, R. Marsala, D. Mastravito, T.K. Mau, B. McCormack, M.M. Menon, O. Mitarai, M. Nagata, N. Nishino, M. Okabayashi, G. Oliaro, D. Pacella, R. Parsells, T. Peebles, B. Peneflor, D. Piglowski, R. Pinsker, G.D. Porter, A.K. Ram, M. Redi, M. Rensink, G. Rewoldt, J. Robinson, P. Roney, M. Schaffer, K. Shaing, S. Shiraiwa, P. Sichta, D. Stotler, B.C. Stratton, E. Synakowski, X. Tang, R. Vero, W.R. Wampler, G.A. Wurden, X.Q. Xu, J.G. Yang, L. Zeng, W. Zhu