

Martin Peng, Ron Bell, Ben LeBlanc, Dan Stutman, Jon Menard, Dave Gates, Steve Sabbagh, Ed Synakowski

and the NSTX National Team

Culham Science Center, Abingdon, U.K. September 15 – 17, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI SNL UC Davis **UC** Irvine **UCLA** UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokyo **JAERI** loffe Inst TRINITI **KBSI KAIST** ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching **U** Quebec

This Study Examines NSTX Data for the Near-Term Tasks Defined by ITPA Topical Group on ITB&T

In 1-2 Years:

- Improve experimental understanding of critical issues of burning plasmas with ITB: $T_i \sim T_e$, low V_{ϕ} , flat density profile, $Z_{eff} < 2$
 - ITB formation, evolution, and sustainment conditions
 - Impurity accumulation
 - Compatibility with divertor requirements
- Develop, manage, and analyze new experimental ITB database
- Test simulation and modeling of ion transport
 - e.g., JT-60U "box-like" ITB T_i profiles, JET (r/a)_{ITB-foot} evolution, etc.

Similarities and differences in TB behavior and plasma regimes of differing A provide levers for improved understanding.

Spherical Torus Challenges Transport Barrier Physics in Extended Parameter Regimes

Spherical Torus Magnetic Configuration

Extended Physics parameter Regimes Affecting Transport:

- High β_T (≤ 40%) & central β_0 (~100%)
- Strong plasma shaping & self fields (A≥1.27, κ≤2.5, B_p/B_t~1, q_{edge}~10)
- Small plasma size relative to gyro-radius (a/p_i~30–50)
- Large trapping fraction towards edge $(f_T \rightarrow 1)$
- Large plasma flow (M_A=V_{rotation}/V_A \leq 0.3)
- Large flow shearing rate ($\gamma_{ExB} \le 10^6/s$)

NSTX Has Built up Basic and Modern Diagnostic Capabilities to Support Research

Core Plasma Diagnostics

- Thomson scattering (20 ch., 60Hz)
- Charge Exchange Recomb. Spect. (CHERS): T_i & v_b (51 ch.)
- VB detector (single chord)
- Soft x-ray arrays (4) [JHU]
- Bolometer array (midplane tangential)
- X-ray crystal spectrometer (T_i (0), T_e(0))
- Edge rotation spectroscopy
- Electron Bernstein wave radiometer
- FIReTIP interf'r/polarim'r (4 ch) [UCD]
- PICXIS Fast 2D X-ray camera [Frascati, JHU]
- Tang. X-ray pin hole camera [U. Wisconsin]

Magnetics and MHD

- Magnetics for equilibrium reconstruction
- Diamagnetic flux measurement
- High-n and high-frequency Mirnov arrays
- Locked mode coils
- 1mm interferometer [UCLA]

Turbulence

- Edge reflectometer [UCLA]
- Edge fluctuation imaging [LANL, PSI]

Plasma Monitoring

- Fast visible camera [LANL]
- VIPS: Visible spectrometer
- SPRED: UV spectrometer
- Transmission grating spectrometer [JHU]
- EFIT (Columbia University)

Boundary Physics

- Divertor Bolometer
- Fast probe [UCSD]
- Infrared Camera (2) [ORNL]
- Fast Ion Gauge [University of Wash]
- Divertor fast camera [Hiroshima Univ.]
- Divertor tile Langmuire probe array
- 1-D CCD H_{α} camera (2) [ORNL]
- Visible filterscopes (H ,, OII, CII) [ORNL]
- Scrape-off layer reflectometer [ORNL]
- Fast camera (PSI)

Energetic Particles

- Fission chamber neutron measurement
- Fast neutron measurement
- Neutral particle analyzer (scanning)
- Fast ion loss probe

NBI-Heated, High-β_p(~1), Nearly Sustained H-Mode Plasmas Provide Good Examples for ITB Studies

T_i Substantial Higher Than T_e in Plasma Core for the "Flattop" Duration

R. Bell, B. LeBlanc

Gyrokinetic Microinstability Calculations Indicate Suppression of Weak ITG by Flow Shear

- NBI-driven flow shearing rate >> ITG growth rate (T_i ~ 2T_e)
- Virulence of ETG depends strongly on T_i/T_e
 - -not likely stabilized by flow shearing for $T_e \leq T_i$
- Other physics under exploration
 - -effects of β'
 - stabilization by negative magnetic shear

Bourdelle

Recent EPS Poster on ITB Provided Improved Definition of the ITB Behavior During Formation

DIIID 98549, 1.1 s 200 "ITB foot" is located by peak of т_i , т_е [keV] (a) 150 $(d/dR)(R_0/L_{Ti})$, ~ peak of dL_{Ti}/dR d/dρ(R_{geo} 100 Critical values are defined for 50 the "ITB foot" $- R_0/L_{T_i} \& \rho_i^* = \rho_i/L_{T_i}$ 25 (b 20 Also value of ρ_i/R_0 at "ITB foot" R_{geo}/L_{Ti} 15 10 MAST 0;/R_{geo} [10⁻³] DIII-D 0.05 JET C 0.04 **JT-60U** └ 0.03 C-MOD AUG a 0.02₽ 0.4 (b) 0.01 0.2 0.5 1.5 3 3.5 2.5 0 2 0.2 0.4 0.6 0.8 R_{geo} [m] ρ

Fujita, EPS P.2-131, plot from DIII-D weak shear ELMy H-mode plasma

NSTX Routinely Exhibit Similar Behavior Under NBI Just Before H-Mode Transition

- >20 ms before H-mode transition after 2 NBI source power
- Peak (dL_{Ti}/dR) is clearly located
- Critical values measured
 - $R_0/L_{Ti} \& \rho_i^* = \rho_i/L_{Ti}$
- And value of ρ_i/R_0

NSTX Data Generally Near or Beyond the Boundary of the Tokamak Range

The Peak (dL_{Ti}/dR) Location Moves to Plasma Edge in ~50 ms After H-Mode Transition

NSTX-TBs?

8th Int ST Wksp. 9/15-17/03

Location of Steep T_i & V_{\phi}Gradients Broadens andMoves Outward Following H-Mode Transition</sub>

Impurity (Carbon) Peaks Toward the Outboard Region Following H-mode Formation and Stayed

R. Bell, B. LeBlanc

Observations and Key Questions to be Answered for the NSTX Plasmas with Steep T_i Profiles

- Strong evidence for χ_i ~ χ_{iNC} over substantial regions; is this for the entire plasma during flattop?
- Evidence for small region of suppressed ion transport before Hmode transition; is this the ITB formation phase?
- The regions of peak barrier (dL_{Ti}/dR)_{peak} and (dV_φ/dR)_{peak} move toward edge region within 50 ms of H-mode transition; what mechanisms drive this evolution?
- Impurity carbon ions peaks toward outboard region (r/a > 0.7); is this a result of large and persistent potential well there?
- Started neoclassical momentum balance calculations. Strong toroidal flow ($V_{\phi}/V_{Alfven} \le 0.3$) affects?
- High resolution CHERS, edge flow spectroscopy, MSE in 2004.

What are the similarities and differences wrt standard A?