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Motivation
• Disparate scales in plasmas: traditionally global-scale phenomena 

are studied using MHD or multi-fluid models, while small-scale 
phenomena are described by kinetic theories.

• Multiscale coupling: small-scale particle kinetic physics couples 
with large-scale MHD phenomena.

• Energetic particle physics: global instabilities (TAE and fishbone 
modes) are driven by fast ions via wave-particle interaction and 
can cause serious fast ion loss in toroidal plasmas. 

• Kinetic-MHD model and simulation codes:  through joint theory-
experimental studies, understanding of energetic particle physics 
phenomena in major tokamak experiments has improved.

• Thermal particle kinetic physics: thermal particle kinetic effects 
are as important as fast ions in determining global phenomena in
burning plasmas – e.g., kinetic ballooning modes, TAEs,

Need to include kinetic effects of both fast and thermal particles 
in studying MHD phenomena in NSTX.



Global Phenomena: MHD Model

• Momentum Equation:
ρ [∂/∂ t + V·∇] V = –∇P + J × B

• Continuity Equation:
[∂/∂ t + V·∇] ρ + ρ∇·V = 0

• Maxwell's Equations:
∂Β/∂ t = –∇×E,   J = ∇×B ,   ∇·B = 0 

• Ohm's Law:  E + V×B = ηJ
• Adiabatic Pressure Law: [∂/∂ t + V·∇] (P/ρ5/3) = 0

important to understand advantages and 
limitations of MHD model.



Advantages of MHD Model

• Retains properly global geometrical effects such as 
pressure gradient, magnetic field gradient & curvature.

• Covers most long wavelength, low-frequency EM 
waves and instabilities:
-- Fast Magnetosonic branch (ω ' kVA): compressional Alfven

waves (CAEs), mirror modes, etc. 
-- Shear Alfven branch (ω = k||VA):  shear Alfven waves (TAEs, 

GAEs), ballooning modes, kink modes, tearing modes, etc.
-- slow magnetosonic modes (ω = k||Cs)

• Simpler to perform theoretical analysis and simulations 
than gyrokinetic/Vlasov models.



Limitations of MHD Model

• Ohm's law: for small resistivity, plasma fluid is 
almost frozen in B and moves perpendicularly 
with E×B velocity, and parallel electric field is 
negligible except in resistive boundary layer. 

• Pressure law: pressure changes adiabatically 
via E×B convection and plasma compression. 

• Gyroviscosity are ignored.

No particle kinetic physics!



Characteristic Scales in NSTX Plasmas

• Characteristic scales of particle dynamics and low-frequency
(ω, k) perturbations:
For B = 1 T, Te,i ~ 1 keV, εh ~ 100 keV, LB, Lp ∼ 0.5 m, 
then we have  ρi ' 0.3 cm,  vi ' 108 cm/s, 
ωci ' 108 sec-1,  ωbi ' 106 sec-1,  ωdi ' 105 sec-1

-- temporal scale ordering:
ωci ∼ ωbe ≥ ωbh > ωbi ∼ ω*i,e ≥ ωdi,e

-- spatial scale ordering: 
∆bh >  ∆bi >  ρh >   ρi ∼ c/ωpi  >   ρe

• To describe low-frequency (ω, k) phenomena, MHD model is a 
good approximation only if (a) ωci >> ω >> ωt, ωb, ωd and (b) 
k⊥ρi << 1 are satisfied for all particle species that have 
significant contributions in density or momentum or pressure.



Kinetic Effects on Ballooning Modes

• Consider finite δE|| due to kinetic effects of 
finite ion gyroradii and trapped electron 
dynamics. 

• A finite δE|| enhances δJ|| which provides a 
strong stabilizing field line bending effect.

• Particle kinetic effects increase (decrease) the 
first (second) critical βC for ballooning 
instability over the MHD prediction.



Kinetic Ballooning Mode Equations
Consider finite dE|| due to kinetic effects of finite ion gyroradii

and trapped electron dynamics, and the approximate KBM equation is
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Stabilizing Kinetic Effects on Ballooning Mode

• For a given electric field perturbation electrons move across B
differently from ions due to finite ion gyroradius effect and charge 
separation is created.

• Ions move much slower than the wave phase velocity along B and is 
essentially quasi-static.

• Electrons move much faster than the wave phase velocity along B and 
will play the role of keeping charge quasi-neutral.

• Trapped electrons do not contribute much to charge redistribution due 
to fast bounce motion.

• Untrapped electrons play the dominant role of maintaining charge 
quasi-neutrality.

• Untrapped electron density is much smaller than trapped electron’s and 
thus an enhanced parallel electric field is created to move the 
untrapped electrons to maintain charge quasi-neutrality.

• Enhanced parallel electric field produces enhanced parallel current and 
thus enhanced field line tension, which stabilizes ballooning modes.

)/( || ie VkV >>ω



KBM Stability
Local dispersion relation
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Trapped Electron Stabilization of KBMs
in Large Aspect Ratio Tokamaks
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Small Aspect RatioTorus: NSTX

R/a = 1.27, a = 0.68 m, κ = 1.63, δ = 0.417, Te = Ti = 1 keV, 
<β> = 9%, qmin = 0.93 at r/a = 0.3



KBM Stability in NSTX (ηi=ηe=0)

n=12

r/a=0.35



Stability of KBMs in NSTX
Temperature gradient effect:
R/a=1.27, ηi=ηe=1

Aspect ratio effect:
R/a=1.67, ηi=ηe=0



Prediction of TAEs Based on MHD Model
• TAEs are discrete toroidal Alfven eigenmodes due to nonuniform

q-profile and nonuniform magnetic field intensity along B. 

High-n TAE equation

ε = r/R ,    s = rq0/q ,   ωA = VA/qR

• Coupling between neighboring poloidal harmonics produces 
Alfven continuous spectrum gap bounded by ω±2 ' (1± ε) ωΑ

2/4
• Magnetic shear allows discrete TAEs with frequencies in the gap: 

ω2 ω−
2 as s 0 ;    ω2 ω+

2 as s ∞
• TAEs exist because the periodicity in the wave potential is broken 

by magnetic shear – similar to discrete energy states in a periodic 
lattice due to periodicity breaking by impurity in solid state 
physics.



NOVA:  Alfvén Continuum (n = 3) and TAEs in NSTX
(q0 = 0.7, q1 = 16)<β> = 10 % <β> = 33 %

• Large continuum gaps due to low aspect ratio
• Many TAEs with different n’s
• TAEs can be driven unstable by fast ions if nq(Vh/VA) · rLh/Rρh



Kinetic-MHD Model: 
Energetic Particle Physics

• Two-component plasma:  core and hot 
components with nh ¿ nc , n ' nc, Pc ∼ Ph

• Core plasmas are treated as MHD-fluid
• Hot particles are governed by kinetic models 

such as gyrokinetic equations or full Vlasov
equations

• Coupling between core plasmas and hot 
particles is via pressure (or current) term in 
momentum equation

• No parallel electric field



Kinetic-MHD Model

• Momentum Equation:
ρ [∂/∂ t + V·∇] V = – ∇Pc

– ∇·Ph + J × B
• Continuity Equation:

[∂/∂ t + V·∇] ρ + ρ∇·V = 0
• Maxwell's Equations:

∂Β/∂ t = –∇×E,   J = ∇×B ,   ∇·B = 0 
• Ohm's Law:  E + V×B = 0,   E·B = 0
• Adiabatic Pressure Law: [∂/∂ t + V·∇] (Pc/ρ5/3) = 0
• Hot Particle Pressure Tensor:

Ph = {mh/2} ∫ d3v vv fh(x,v)
where fh is governed by gyrokinetic or Vlasov equation.



PPPL Kinetic-MHD Codes
• Linear Stability Codes

-- NOVA-K: global TAE stability code with perturbative
treatment of thermal particle and fast ion kinetic physics

-- NOVA-2: global kinetic-MHD code with non-perturbative
treatment of fast ion kinetic effects

-- HINST: high-n kinetic-MHD code with non-perturbative
treatment of fast ion kinetic effects

• Nonlinear Simulation Codes
-- M3D-K: global kinetic-MHD code including fast ion kinetic 

physics which is determined by gyrokinetic equation. 
-- HYM-1:  global kinetic-MHD code with fast ion kinetic 

physics determined by full Vlasov equation of motion. 
-- HYM-2:  global hybrid code with ions treated by full equation of 

motion and electrons treated as massless fluid.
Through joint theory-experiment efforts, we have gained 
understanding of energetic particle physics phenomena in major 
tokamak experiments.



Fast ions excite large amplitude bursting 
TAEs, which cause fast ion loss in NSTX
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• Fast neutron drops 
correlated with H-alpha 
bursts; fast ions hitting 
wall?

• Small impact on soft x-ray 
emission.

(Fredrickson et al.)



Bursting TAEs in NSTX NBI Experiments

2

0

-2

t = 0.267

108530

200 µs

(Fredrickson et al.)
1.0

0.0
1.0

0.0
6

0

-6
0.20 0.25 0.30

TIME (s)

H-alpha

Neutrons (10 14 /s)

108530

• NSTX shot with B = 0.434T, R = 87 cm, a = 63cm, PNB = 3.2MW.
• Single dominant mode being n=2 or 3, mode amplitude modulation 

represents "beating" of multiple modes. 
• Bursting TAEs lead to neutron drop and cause 5 – 10% fast ion loss.



NOVA-K Study of TAEs in NSTX
NOVA-K ResultsNSTX Results
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fTAE = VAlfvén(0)/4πqR0

f = fTAE + n “frotation”

Plasma rotation is significant 
in determining TAE frequencies.



Plasma Rotation in NSTX



Integrated Modeling of Burning Plasmas
α interaction with thermal plasmas is a strongly nonlinear process.

Auxiliary Heating
Fueling
Current Drive

P⊥(r,θ), Pk(r,θ), n(r), q(r)

Global Stability, Confinement, 
Disruption Control

Heating Power: Pα > Paux

Fast Ion Driven Instabilities
Alpha/Fast Ion Transport

Fusion
Output

α-Heating
α-CD

Must develop efficient methods to control profiles for burn control!
Need nonlinear kinetic-fluid simulation codes!



Limitations of Kinetic-MHD Model

• Negligible fast particle density
• Ek = 0
• No thermal particle kinetic effects (except in the 

perturbative version of linear NOVA-K code)

Need a hybrid kinetic-fluid model that 
treats kinetic physics of both thermal and 
fast particles and retains single-fluid frame 
work to model burning plasma dynamics.



Thermal Particle Kinetic Effects
• Finite ion Larmor radius (k⊥ ρi ∼ O(1)) 
• Finite banana orbit width (∆b ∼ k⊥-1) 
• Trapped particles
• Wave-particle resonances

- finite parallel electric field Ek ≠ 0 
- wave damping or drive
- Kinetic Alfven waves, KTAEs
- Radiation damping of TAEs and KTAEs
- stochastic ion heating by large amplitude Alfven waves
- boundary layer physics in kink and tearing modes
- current layer physics in magnetic reconnection
- stabilization of ballooning mode, kink modes



Kinetic-Fluid Model
• High-β multi-ion species plasmas 
• Ordering:  ω < ωci, k⊥ρi ∼ O(1)
• No ordering on nh , nc , Pc , Ph

• Single-fluid equations consisting of mass density and 
momentum equations, and generalized Ohm’s law

• Closure of single-fluid equations by determining 
pressure tensor (including gyroviscosity) from particle 
distributions

• Particle dynamics governed by kinetic models such as 
gyrokinetic equations or full Vlasov equations

• Finite parallel electric field
[Cheng & Johnson, JGR, 1999]



Summary

• Kinetic effects are significant for MHD modes, e.g.,
-- kinetic stabilization of ballooning modes by trapped electron 

dynamics and ion FLR 
-- destabilization of TAEs by fast ions

• Kinetic-MHD codes (linear codes: NOVA-K, NOVA-2, HINST; 
nonlinear codes: M3D-K, HYM) have been developed to study 
fast ion physics.

• A low frequency (ω < ωci) nonlinear kinetic-fluid model has been 
developed to include coupling between global modes and kinetic 
physics of both thermal and fast particles. 

• Physics of wave-particle interaction and global geometrical 
effects are properly included in the kinetic-fluid model.

• Extension of kinetic-MHD codes to include thermal particle 
kinetic effects will be developed based on kinetic-fluid model. 
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